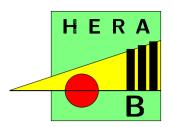
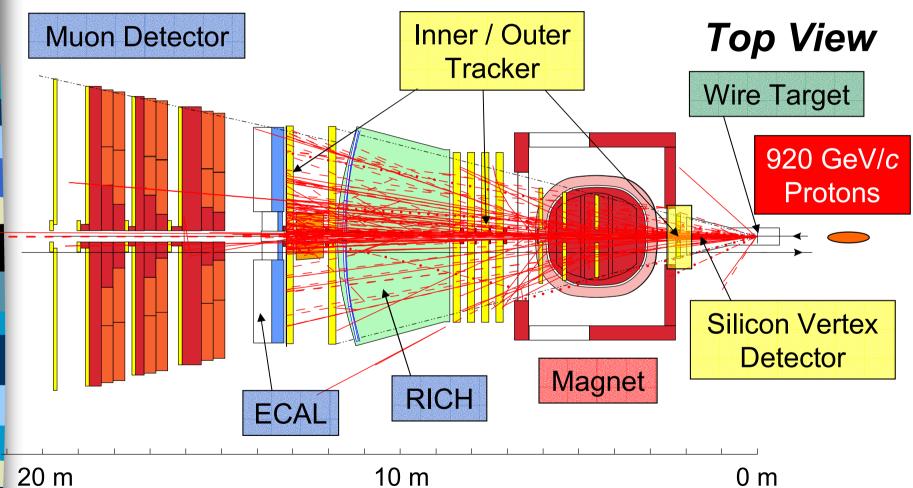
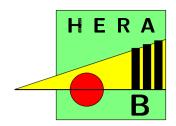


Charmonium A-Dependence at HERA-B


2nd International Workshop on Heavy Quarkonium Fermi National Accelerator Laboratory, September 20-22, 2003


Ulrich Husemann for the HERA-B Collaboration

husemann@hep.physik.uni-siegen.de


Experimentelle Teilchenphysik, Universität Siegen

The HERA-B Detector

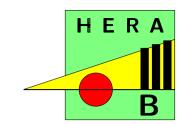
The Di-Lepton Trigger

HERA-B detector: data is read out and buffered for 10 μ s (proton bunches cross every 96 ns, 0.5 interactions/BX)

5 MHz

Pretriggers: ECAL clusters or hit coincidences in Muon Detector as trigger seeds (custom hardware)

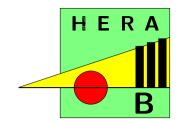
3 MHz

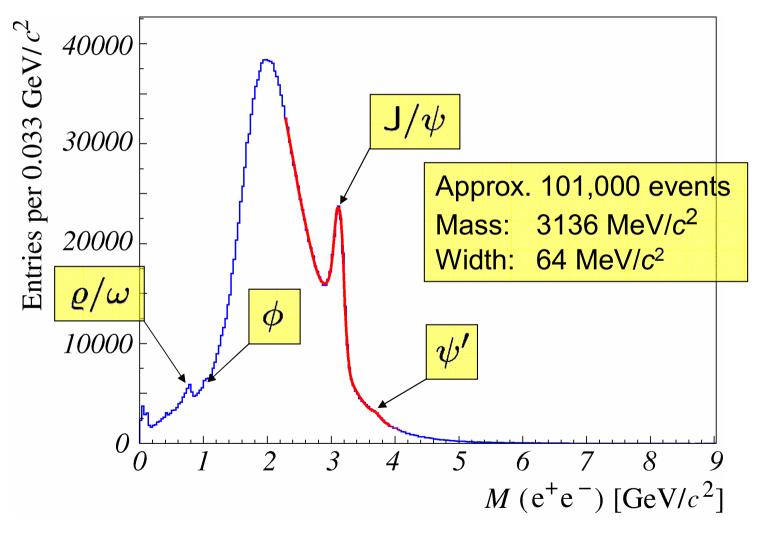

First Level Trigger (FLT): Track trigger in custom hardware using tracking detectors behind magnet

20 kHz

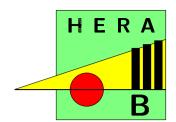
Second Level Trigger (SLT): FLT tracking confirmed, extrapolation to Vertex Detector, vertex fit (PC farm)

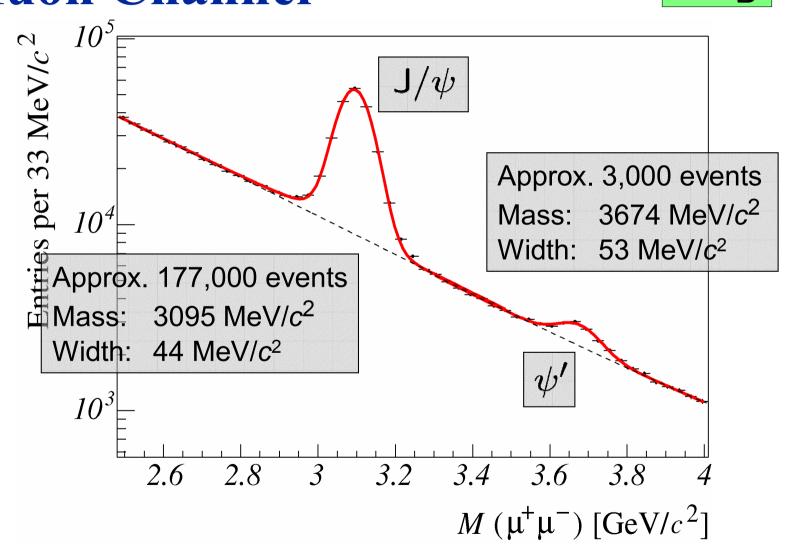
Data Set & Physics Program 2002/2003

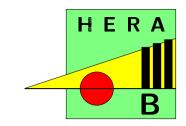


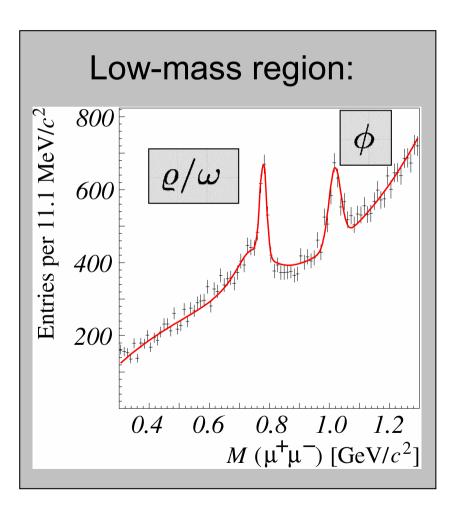

- 3 months of data-taking in 2002/2003 (11/02 02/03)
- 150 million events with di-lepton trigger, ¹²C and ¹⁸⁴W targets

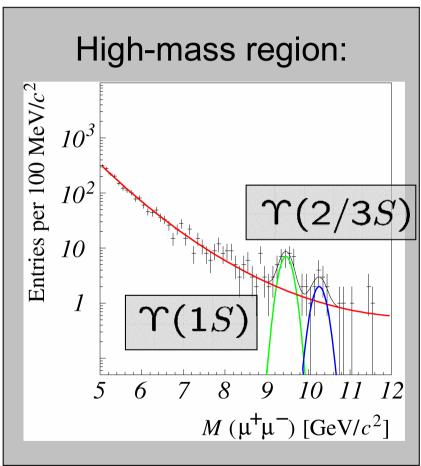
J/ψ (muon channel)	170,000
J/ψ (electron channel)	150,000

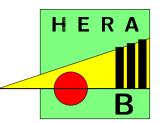

- Trigger performance: $1,000 1,500 \text{ J/}\psi$ per hour (cf. data-taking in 2000: $25 30 \text{ h}^{-1}$)
- Physics program for di-lepton trigger:
 - A. How does the production of charmonium depend on the atomic number A of the target nucleus? \rightarrow "A-dependence"
 - B. What is the $b\bar{b}$ production cross-section?
 - C.Charmonium production: J/ψ , ψ' , χ_c (see talk by R. Spighi)
- Minimum-bias trigger: strangeness, hyperons, open charm

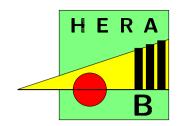

Di-lepton Spectrum: Electron Channel

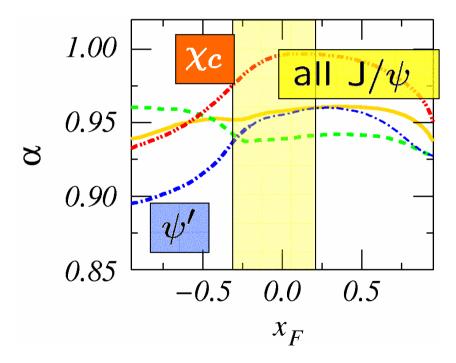



Di-lepton Spectrum: Muon Channel



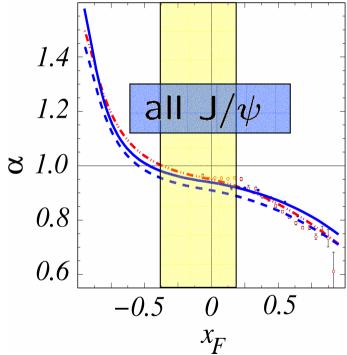

Di-lepton Spectrum: Muon Channel


A-Dependence: Theory

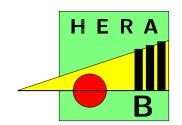

- Charmonium production: theoretical models
 - Color Evaporation Model (CEM)
 - Color Singlet Model (CSM)
 - Non-relativistic QCD (NRQCD): color singlet & color octet contributions
 - Other models (e.g. Regge-inspired)
- Modification of models via nuclear effects
 - Initial state effects: shadowing, energy loss, p_T broadening by multiple scattering
 - Final state effects: absorption in nuclear matter, co-mover interaction
 - Parametrization: power law with exponent $\alpha = \alpha(x_F, p_T)$

$$\sigma_{\mathsf{pA}} = \sigma_{\mathsf{pN}} \cdot A^{\alpha}$$

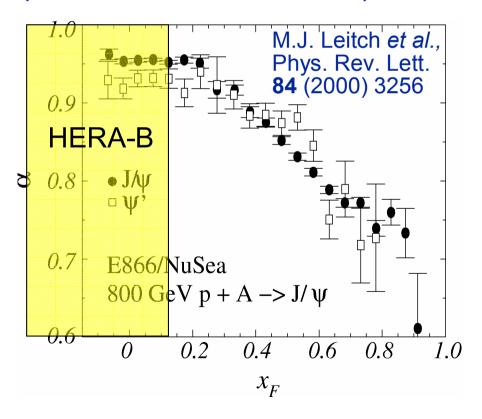
Theory: Predictions



Prediction 1: NRQCD + nuclear absorption

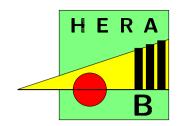

R. Vogt, Nucl. Phys. **A700** (2002) 539

Prediction 2: BCKT (Reggeon-based)



K.G. Boreskov, A.B. Kaidalov, JETP Lett. **77** (2003) 599

A-Dependence: HERA-B's Contribution


Measurements in proton-nucleus scattering (Fermilab E866/NuSea) as a function of x_F

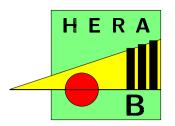
HERA-B:

- Extend to $x_F \approx -0.3$
- Triggering 2 channels simultaneously: e, μ
- 2 materialssimultaneously (C, W)→ control systematics
- New: χ_c A-dependence

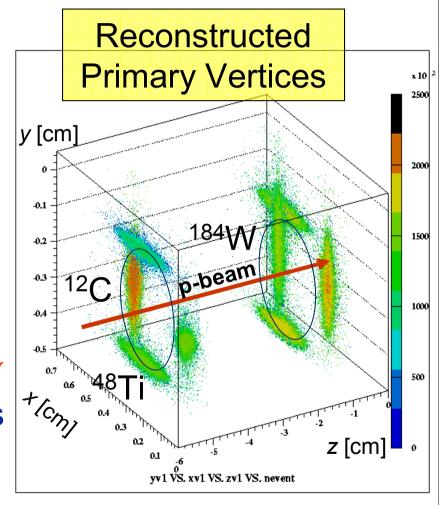
Analysis Chain

- Parametrization: $\sigma_{pA} = \sigma_{pN} A^{\alpha}, \quad \sigma = N/\varepsilon \mathcal{L}$
 - → α can be determined from measurements with two materials, in HERA-B: two-wire running

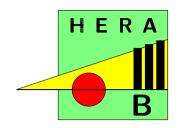
$$\alpha = \frac{1}{\log(A_1/A_2)} \log \left(\frac{N_1}{N_2} \frac{\mathcal{L}_2}{\mathcal{L}_1} \frac{\varepsilon_2}{\varepsilon_1} \right)$$

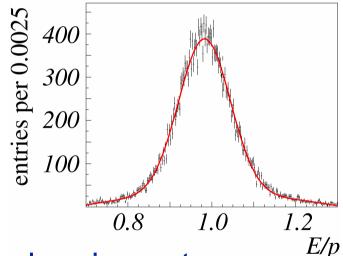

3 ingredients of A-dependence measurement:

1: Ratio of J/ψ yields

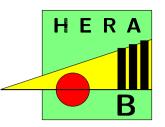

2: Ratio of luminosities

3: Ratio of efficiencies

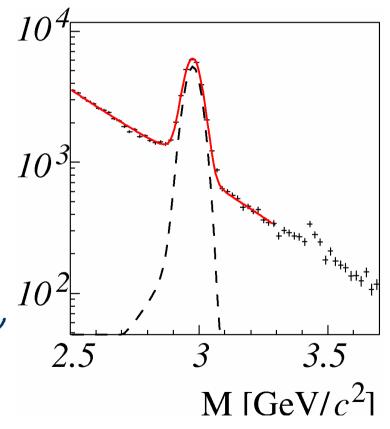

Data Samples for A-Dependence Analysis


- Target: 2 stations with 4 wires each
- 3 different combinations of Carbon/Tungsten wires
 - Approx. 150,000 J/ ψ
 - Different systematic effects (mainly acceptance)
- Sample w/o A-dependence for cross-checks: 2× Carbon, approx. 35,000 J/ψ
- This talk: preliminary results on Carbon/Tungsten combination from same station

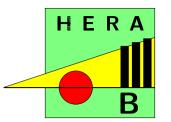
J/\psi Yield



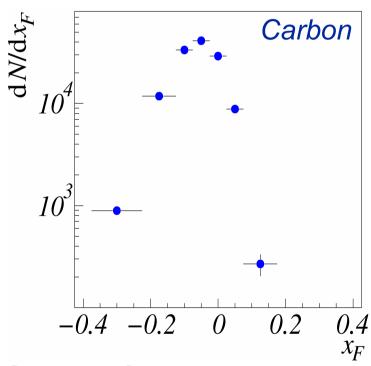
- Selection of muons:
 - "Long" tracks crossing Vertex Detector and Main Tracker, confirmed by Muon Detector
 - Kinematics: 6 GeV/c GeV/<math>c, $p_T > 0.6$ GeV/c
- Selection of electrons:
 - Tracks crossing Vertex Detector
 & Main Tracker, combined with
 ECAL cluster
 - Cuts on track-cluster matching,
 E_T, cluster shape, and E/p

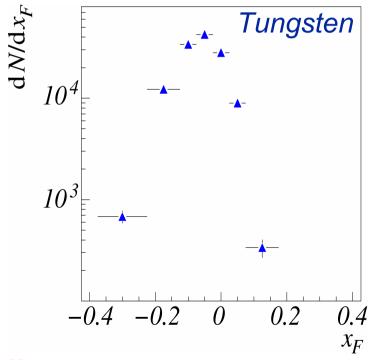

• Vertex fit of opposite-charge track pairs, cut on minimum χ^2 -probability of vertex

Fit to Di-Muon Spectrum

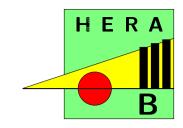


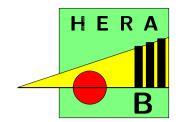
Number of J/ψ from maximum likelihood fit to invariant mass spectrum:


- Signal width dominated by detector resolution:
 - → Gaussian signal model with 5% tail from final state radiation
- Combinatorial background, mainly decays in flight of pions and kaons $\pi/K \to \mu\nu$
 - Exponential background model



From Raw Spectra to a


Fit invariant mass spectrum in bins of x_F (split data into per-wire samples)


- Correct for acceptance and efficiency
- Calculate (logarithm of) ratio

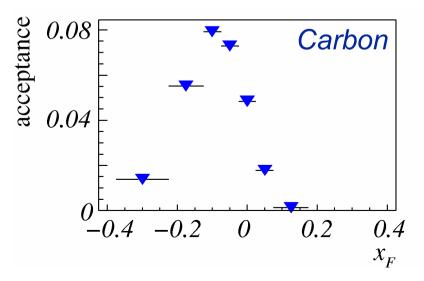
Efficiency

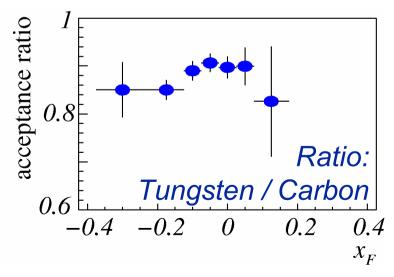
- **Efficiency** to detect J/ψ is composed of
 - Geometrical acceptance of detector and trigger
 - Detector and trigger efficiency (varying in space & time)
 - Reconstruction efficiency
 - → All efficiencies are functions of the kinematic variables
- Relative measurement: need only efficiency ratios
 - Efficiencies expected to cancel to first order in ratios
 - Remaining: ratio of detector and trigger acceptances
- Acceptance correction based on MC-simulation
 - Correct every x_F/p_T -bin by $N(J/\psi)_{\text{reconstructed}} / N(J/\psi)_{\text{generated}}$
 - First tests with unfolding techniques

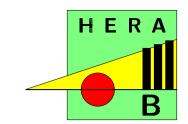
Efficiency (cont'd)

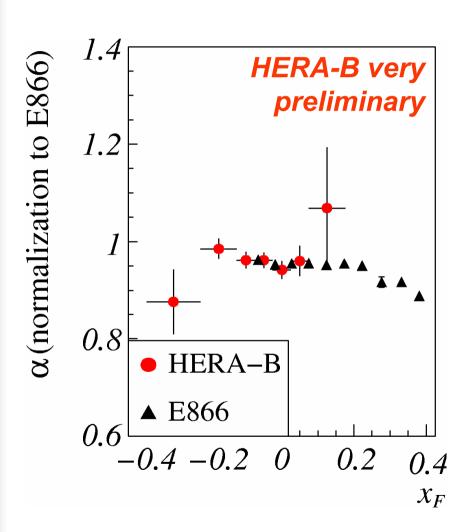
HERA-B MC-simulation chain:

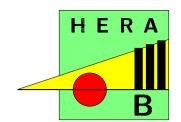
Generators: PYTHIA, FRITIOF

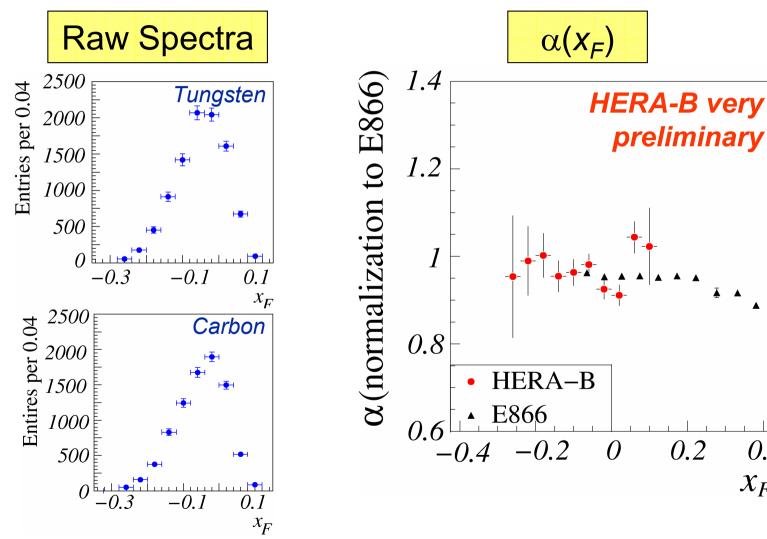



Detector Simulation: GEANT3


Reconstruction & Trigger Simulation

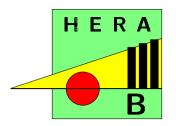

Di-muon efficiency: example (limited MC statistics)


Preliminary Results: Muon Channel

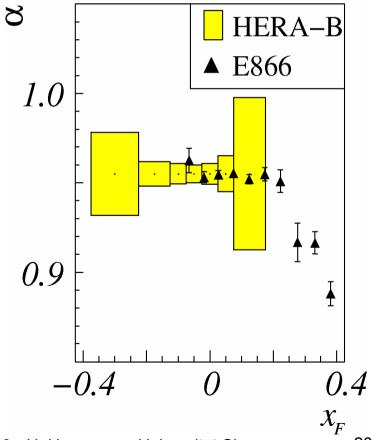


- Wire configuration:
 both wires from same
 station
 - → Only ¼ of full statistics
- Luminosity rationot yet available→ Normalization to E866
- Central x_F region under good control

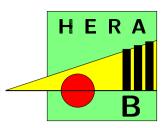
Preliminary Results: Electron Channel



0.4


 \mathcal{X}_F

Plans & Expectations



- Analysis of all data sets and combination
 - → 4× more data available both in electron and muon channel
- Work on systematic effects ongoing:
 - Improved MC description of detector and trigger efficiency
 - Improved MC statistics
 - Absolute normalization via luminosity ratio

Full Data-Sample: Expected Statistical Error

Summary & Conclusions

- HERA-B has finished the data-taking period $2002/2003 \rightarrow \text{approx. } 300,000 \text{ J/} \psi \text{ on tape}$
- One of the main physics goals:
 A-dependence of charmonium production
- HERA-B: unique experiment materials from ¹²C to ¹⁸⁴W, negative x_F
- A-dependence analysis ongoing:
 - First results expected end of this year
 - Experimental and theoretical input is welcome
- Thanks to: HERA-B Charmonium Working Group

This work was supported by the German Bundesministerium für Bildung und Forschung under the contract number 5HB1PEA/7

bmb+**f** - Förderschwerpunkt

HERA - B

Großgeräte der physikalischen Grundlagenforschung