

Von der Entdeckung zur Präzisionsphysik Top und Higgs am LHC

Antrittsvorlesung 10. Juli 2013

....

Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Entdeckung

Präzision

Physiker = Uhrmacher Jedes Detail zählt!

P

Physiker = Schatzsucher: Wie gut ist "gut genug"? [R. Baumgarten]

[www.weltderphysik.de]

[Klanner, Schörner-Sadenius, Physik Journal, Mai 2006]

Historisches Beispiel: Struktur der Materie

- Rutherford-Experiment: Atom = kompakter Kern + Hülle
- Tiefinelastische Streuung (SLAC \rightarrow HERA \rightarrow LHC): Proton = Quarks + Gluonen

Aktuelle Entwicklungen:

- Top-Entdeckung am Tevatron \rightarrow Präzisionsphysik mit Top-Quarks am LHC
- Higgs-Boson-Entdeckung am LHC \rightarrow Vorbereitung von Präzisionsmessungen

Massen der Elementarteilchen

Quarkmassen

- Higgs-Mechanismus: Massen der Elementarteilchen durch Kopplung an Higgs-Feld
- Higgs-Mechanismus erklärt nicht, welche Masse Teilchen besitzen
- Standardmodell: 6 Quarks, stark unterschiedliche Massen
- Besonders interessant: Top-Quark – fast 40-mal schwerer als Bottom-Quark

Eigenschaften des Top-Quarks? Zusammenspiel von Top-Quark und Higgs-Boson?

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

[Scientific American, September 1997]

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

Die Entdeckung von gestern ...

[Scientific American, September 1997]

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

Die Entdeckung von gestern ist heute das Signal

[Scientific American, September 1997]

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

Die Entdeckung von gestern ist heute das Signal ... ist morgen die Kalibrationsquelle

[Scientific American, September 1997]

2008: Flavorverletzende Neutrale Ströme?

Viele weitere Resultate

Totale und differenzielle Wirkungsquerschnitte, Einzeltop-Produktion, Ladung, Lebensdauer, Vorwärts-Rückwärts-Asymmetrie, W-Boson-Polarisation, Suche nach Neuer Physik, ...

6

Das Tevatron-Vermächtnis: Top-Masse

ende Neutrale Ströme?

tion, Ladung, sation, Suche

6

Das Tevatron-Vermächtnis: Top-Masse

ende Neutrale Ströme?

Top-Quarks am LHC

- Sommer 2010: "Erste Top-Quarks in Europa"
- Ab Winter 2010/2011: Präzisionsmessungen der Top-Quark-Antiquark-Produktion, Top-Eigenschaften, …

- Schlüsselmessung: absolute Produktionsrate Herausforderung: Kontrolle systematischer Unsich
 - \rightarrow Herausforderung: Kontrolle systematischer Unsicherheiten
- Verbesserte theoretische Rechnungen, Höhepunkt 2013: tt-Produktion in nächst-nächstführender Ordnung QCD-Störungstheorie (NNLO)

Der Fortschritt in Zahlen

	Autoren	Siliziumdetektor	Rekonstruierte Top-Quarks (Lepton+Jets, 1 b-Tag)
Tevatron Run I (1992–1996)	400	0.7 m² 46.000 Kanäle	25 Entdeckung

Der Fortschritt in Zahlen

	Autoren	Siliziumdetektor	Rekonstruierte Top-Quarks (Lepton+Jets, 1 b-Tag)
Tevatron Run I (1992–1996)	400	0.7 m² 46.000 Kanäle	25 Entdeckung
Tevatron Run II (2001–2011)	600	6 m² 720.000 Kanäle	2000

Der Fortschritt in Zahlen

	Autoren	Siliziumdetektor	Rekonstruierte Top-Quarks (Lepton+Jets, 1 b-Tag)
Tevatron Run I (1992–1996)	400	0.7 m² 46.000 Kanäle	25 Entdeckur
Tevatron Run II (2001–2011)	600	6 m² 720.000 Kanäle	2000
LHC Run I (2009–2012)	2500	200 m² 75.000.000 Kanäle	150000

außerdem: Qualität der theoretischen Rechnungen und Simulationsprogramme, Größe der Analyseteams, Zahl der Variablen in Likelihoodanpassungen, ...

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

Präzise Produktionsrate

Signatur eines tt-Zerfalls im Lepton+Jets-Kanal

- Isoliertes geladenes Lepton → Online-Selektion
- Neutrino: indirekte Rekonstruktion über fehlenden Transversalimpuls
- Vier Quarks: Bündel von Hadronen ("Jets")

Lepton+Jets: Feynman-Diagramm

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

- Trennung von tt-Signal und Untergrund über Kinematik des Ereignisses

 - - Top-Zerfallsprodukte im Schnitt energetischer als Untergrund
 - Geringe Top-Geschwindigkeit → (relativ) isotrope Verteilung der Zerfallsprodukte im Detektor
 - Zusammengefasst in Likelihood-Diskriminante

Präzise Produktionsrate

Signatur eines tt-Zerfalls im

Isoliertes geladenes Lepton

Neutrino: indirekte Rekonstruktion

über fehlenden Transversalimpuls

Lepton+Jets-Kanal

 \rightarrow Online-Selection

Hadronen ("Jets")

Vier Quarks: Bündel von

Lepton+Jets: Feynman-Diagramm

Präzise Produktionsrate

Aufwändige Anpassungsrechnung: 39 Parameter für Normierung und Form von Signal und Untergrund

Vorteil: systematische Unsicherheiten mit Daten beschränkt

 $\sigma_{t\bar{t}} = 179.0^{+9.8}_{-9.7}$ (stat.+syst.) \pm 6.6 (lumi) pb

Relative Unsicherheit: 6.6% Theoretische Vorhersage 2013: (NNLO+NNLL): 4.4%

Top-Paare + Jets

The LHC is a "jetty" place. (J. Huston, MSU)

Hohe Energie am LHC: Abstrahlung zusätzlicher Jets sehr wahrscheinlich

tt-Produktion mit zusätzlichen Jets

- Präzisionsphysik mit komplizierten Multijet-Endzuständen
- Herausforderung f
 ür Experiment und Theorie/Simulation
- Top-Paare + Jets als "Vorübung"
 - Suche nach Neuer Physik
 - Assoziierte tt-Higgs-Produktion

Top-Produktionsrate als Funktion zusätzlicher Abstrahlung

CERN, 4. Juli 2012: das (ein?) Higgs-Boson

欧核中心称新发现粒子与" 温家宝主持召 被认为是30年

La «pa

de Die

অনন্দৰ

পেয়েছি, মা

十查出问题整改: 生, 听取全国社会

萄牙国务部长兼外 ★波塔斯

国务院常务

文,部署2011年月 央预算执行等

2 暗资全审计

Le Monde Union will Überschüsse

in Sozialkassen horten

found, looks like Higgs boson

BREAKTHROUGH of the YEAR The **HIGGS** BOSON

21 December 2012 \$10

AAAS

9

LE BERRY

The Sydney Morning Herald Another year of pain for Blues

The Japan Times

Zeitliche Entwicklung

- Juli 2012: Entdeckung eines *Higgs-artigen* Teilchens
- März 2013: gefundenes Teilchen ist ein Higgs-Boson, Higgs-Spin
- Juli 2013: mehr Zerfallskanäle, genauere Messungen

Zeitliche Entwicklung

- Juli 2012: Entdeckung eines *Higgs-artigen* Teilchens
- März 2013: gefundenes Teilchen ist ein Higgs-Boson, Higgs-Spin
- Juli 2013: mehr Zerfallskanäle, genauere Messungen

Zeitliche Entwicklung

- Juli 2012: Entdeckung eines *Higgs-artigen* Teilchens
- März 2013: gefundenes Teilchen ist ein Higgs-Boson, Higgs-Spin
- Juli 2013: mehr Zerfallskanäle, genauere Messungen

- Frage: Massen der Fermionen wirklich durch Higgs-Mechanismus erzeugt ("Yukawa-Kopplung")?
 - Top = schwerstes Fermion → stärkste Kopplung
 - ttH-Produktionsrate ~ $|Top-Higgs-Yukawa-Kopplung|^2 \rightarrow direkte Messung$
- Berausfordernde experimentelle Signatur, z. B. Zerfall $H \rightarrow b\overline{b}$

Lepton Neutrino 6 Jets 4 davon aus b-Quarks *as messy as it gets…*

"Bewegte Geschichte"

2001: vielversprechender Kanal (Drollinger, Müller)

"Bewegte Geschichte"

2001: vielversprechender Kanal (Drollinger, Müller)

2008: tt+bb-Untergrund zu groß (Bredenstein et al.)

"Bewegte Geschichte"

2001: vielversprechender Kanal (Drollinger, Müller)

2008: tt+bb-Untergrund zu groß (Bredenstein et al.)

2008: Rettung durch Jet-Substruktur (Butterworth et al.)

"Bewegte Geschichte"

2001: vielversprechender Kanal (Drollinger, Müller)

2008: tī+bb-Untergrund zu groß (Bredenstein et al.)

2008: Rettung durch Jet-Substruktur (Butterworth et al.)

2013: Signal noch nicht klar etabliert, Vorbereitung für Datennahme 2015

Ausschlussgrenzen für ttH-Produktion

"Bewegte Geschichte"

2001: vielversprechender Kanal (Drollinger, Müller)

2008: tī+bb-Untergrund zu groß (Bredenstein et al.)

2008: Rettung durch Jet-Substruktur (Butterworth et al.)

2013: Signal noch nicht klar etabliert, Vorbereitung für Datennahme 2015

Ausschlussgrenzen für ttH-Produktion

0

Zukunftspläne

Europäische Strategie 2013

LHC: Physikprogramm bis 2030

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

[aus CERN-Council-S/106, verabschiedet vom CERN-Council, 30. Mai 2013]

Europäische Strategie 2013

LHC: Physikprogramm bis 2030

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

Weitere Studien zu Beschleunigern bei höchsten Energien

CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines.

[aus CERN-Council-S/106, verabschiedet vom CERN-Council, 30. Mai 2013]

Europäische Strategie 2013

LHC: Physikprogramm bis 2030

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

Weitere Studien zu Beschleunigern bei höchsten Energien

CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines.

Komplementär zum LHC: Elektron-Positron-Linearbeschleuniger

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

[aus CERN-Council-S/106, verabschiedet vom CERN-Council, 30. Mai 2013]

Zukunftspläne am LHC

LHC ab 2015: Datennahme bei Designenergie

- Neues Suchfenster f
 ür Physik jenseits des Standardmodells → Entdeckungen?
- Präzisionsphysik mit Top und Higgs
- Verbesserte Instrumentierung,
 z. B. neuer Silizium-Pixeldetektor ab 2017

Zukunftspläne am LHC

LHC ab 2015: Datennahme bei Designenergie

- Neues Suchfenster f
 ür Physik jenseits des Standardmodells → Entdeckungen?
- Präzisionsphysik mit Top und Higgs
- Verbesserte Instrumentierung,
 z. B. neuer Silizium-Pixeldetektor ab 2017

LHC jenseits von 2020: Hochluminositätsphase

- Datensatz verzehnfacht → noch höhere Präzision
- Weitere Entdeckungen? Mechanismus der elektroschwachen Symmetriebrechung?
- Weiter verbesserte Instrumentierung: Detektoren vollständig überarbeitet

Genauigkeit der Messung der Produktionsrate in wichtigsten Higgs-Zerfallskanälen

CMS Projection Expected uncertainties on 10 fb⁻¹ at **s** = 7 and 8 TeV Higgs boson signal strength µ 300 fb⁻¹ at s = 14 TeV 300 fb⁻¹ at is = 14 TeV w/o theory unc. $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ$ $H \rightarrow WW$ $H \rightarrow \tau \tau$ $H \rightarrow bb$ 0.5 0.0 1.5 2.0 1.0Signalstärke µ

[https://twiki.cern.ch/twiki/bin/view/CMSPublic/HigProjectionEsg2012TWiki]

Genauigkeit der Messung der Produktionsrate in wichtigsten Higgs-Zerfallskanälen

CMS Projection Expected uncertainties on 10 fb⁻¹ at **s** = 7 and 8 TeV Higgs boson signal strength µ 300 fb⁻¹ at s = 14 TeV 300 fb⁻¹ at is = 14 TeV w/o theory unc. Juli 2012: ±40% $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ$ $H \rightarrow WW$ $H \rightarrow \tau \tau$ $H \rightarrow bb$ 0.5 0.0 1.5 2.0 1.0Signalstärke µ

[https://twiki.cern.ch/twiki/bin/view/CMSPublic/HigProjectionEsg2012TWiki]

Genauigkeit der Messung der Produktionsrate in wichtigsten Higgs-Zerfallskanälen

CMS Projection Expected uncertainties on 10 fb⁻¹ at **s** = 7 and 8 TeV Higgs boson signal strength µ 300 fb⁻¹ at s = 14 TeV 300 fb⁻¹ at is = 14 TeV w/o theory unc. Juli 2012: ±40% $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ$ Um 2020: $H \rightarrow W$ 10-15% $H \rightarrow \tau \tau$ $H \rightarrow bb$ 0.5 0.0 1.5 2.0 1.0Signalstärke µ

[https://twiki.cern.ch/twiki/bin/view/CMSPublic/HigProjectionEsg2012TWiki]

A

√s

ATLAS Preliminary (Simulation)

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

Genauigkeit der Messung der Produktionsrate in wichtigsten Higgs-Zerfallskanälen

Herausforderung Pileup

Test 2012: 78 rekonstruierte gleichzeitige pp-Kollisionen

Neuer CMS-Pixeldetektor

- Verwendung: präzise Rekonstruktion von Spuren geladener Teilchen und deren Ursprungsorten
- Technologie: Hybrid-Pixeldetektoren (Sensor + separater Auslesechip)
- Neuer Pixeldetektor 2017
 - Neue vierte Detektorlage, trotzdem weniger Material als derzeit
 - IEKP und IPE: Bau von Pixelmodulen für Hälfte der neuen vierten Lage

Produktion von Pixelmodulen

Pixelsensor

Produktion von Pixelmodulen

Produktion von Pixelmodulen

Zusammenfassung

Teilchenphysik: Wechselspiel von Entdeckung und Präzision
 LHC heute: Ära der Präzisions-Top-Physik

Higgs: derzeit am Übergang zur Präzisionsphysik

Zukunftspläne am LHC: höhere Luminosität

- Verbesserte Detektoren und verbesserte Analysen \rightarrow Präzision
- Weitere Entdeckungen?

Herzliche Einladung zum

Stehempfang im Gaede-Foyer