

Silicon Pixel Modules for the CMS Phase I Upgrade: Lessons Learned

9th Terascale Detector Workshop Freiburg, April 6, 2016

Upgrade of the CMS Pixel Detector

The Current CMS Pixel Detector

- Geometry: barrel + endcaps
 - BPIX: 3 layers
 - FPIX: 2×2 disks
- Pixel detector modules (BPIX)
 Sensor: CiS n⁺-in-n, 150×100 µm²
 Analog readout chip: PSI46
 - FPIX Half Disk

General Phase 1 Pixel Upgrade Strategy

Modification	Impact
More layers : $3 \rightarrow 4$ barrel layers, $2 \times 2 \rightarrow 2 \times 3$ forward disks	More 3D pixel space points, more tracking redundancy
Smaller radius of innermost layer	Improved impact parameter resolution (key to excellent B-tagging at high pileup)
Improved mechanics , cooling , and powering	Reduced material budget: less multiple scattering, fewer photon conversion
New digital readout chip	Front-end electronics ready for high rates

BPIX Production

- Barrel pixel module production: **distributed** effort (reminder: current barrel pixel detector built by Swiss consortium alone)
 - Layers 1 and 2: Swiss consortium (PSI, ETH Zürich, U Zürich)
 - Layer 3: Italy/CERN/Taiwan/Finland
 - Layer 4: German consortium "DPix" (RWTH Aachen, DESY, U Hamburg, KIT)

DPix consortium:

- Two parallel production lines (DESY/UHH, KIT/RWTH)
- Advantages: exchange of experience and material, joint investigation of problems arising

Updated BPIX Modules

Process Flow: Bump Bonding

Bump Bonding Equipment

Module Assembly Clean Room

Pixel Module Assembled at KIT

"... because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – the ones we don't know we don't know".

D. Rumsfeld

Lessons Learned: A Subjective Selection

Material Supply

- Example from CMS pixel production: choice of **bumping vendors**
- Step 1: Find vendors
 - Check material specifications and availability
 - Lesson: vendor may not be interested in doing business with you at all (too small scale, other priorities)

Step 2: Qualify vendors

- Check product quality of different vendors with prototypes \rightarrow best product
- **Lesson**: production quality may vary from prototype to pre-series to series

Step 3: Issue purchase order

Lesson: be prepared for delays due to legal problems, customs, ...

SEM Picture of RTI SnPb Bump

Quality Control

Quality of pixel detector modules depends on

- Quality of incoming **materials** (sensors, readout chips, HDIs, ...)
- Quality of internal processes (bump bonding, gluing, ...)
- Incoming materials: production quality may vary → detailed acceptance tests
 - **Lesson:** Acceptance tests take time \rightarrow **automate** tedious tasks
- Example from CMS pixel production: acceptance tests for chips and sensors
 - Optical inspection: all bumps, sensor UBM, guard rings, …
 - Partial automation via pattern recognition → takes time to develop (keep "human factor" involved → save development time)

Semi-Automated Chip Inspection

Quality Control: Processes

Planning: think of reasonable quality criteria before production

- "Le mieux est l'ennemi du bien": how good is good enough?
- Criteria may be revised based on production experience
- During production: monitor and document quality of each production step, examples from CMS pixel module production:
 - Optical inspection: mechanical precision, any obvious flaws (glue spilled, dirt on wire bonding pad, ...)?
 - **Pull tests**: mechanical strength of connections (bump bonds, wire bonds)?
 - **Electrical tests**: intended readout chip functionality?
 - Long-term trends: drifts of key quality criteria? (e.g. assembly tools worn or misaligned, varying material quality, people getting sloppy)

Quality Control: Processes

- Various diagnostic tools required for quality control (in-house and external) → check availability, cost, ...
- Examples from CMS pixel module production:
 - Electrical tests: custom test boards + firmware + software, ...
 - Bump bonding: cross section pictures, SEM, micro X-ray tomography, …
 - Gluing: optical microscope and camera, precision metrology, ...

Bump Bond Cross Section

Microscope Picture of Module Edges

Ulrich Husemann Institut für Experimentelle Kernphysik

Quality Control: Feedback Loops

- Important: quick feedback on production quality
- Examples from CMS pixel production:
 - Bare module probing within 1–2 days after bump bonding → quick detection of bump bonding problems
 - HDI probing only shortly before assembly → significant delays in case of problems with production quality

Mechanical Precision

- Recall your undergraduate studies
 - Physics 101: every measurement has an uncertainty
 - But did you attend Mechanical Engineering 101? Physical properties (e.g. dimensions) of all materials vary → tolerances
- Key question: which mechanical precision is really required?
 - Overestimation → over-design of tools (difficult, expensive, …)
 - Underestimation → alignment difficult or impossible

Example from CMS pixel production: assembly jigs

Low-Tech Woes: Module Handles

- Full pixel modules mounted on aluminum "module handles"
 - Flat piece of aluminum, laser-cut, precision holes
 - Protective cap for module, strain relief for cable

iHandle 3

der neue Modulhandle. Es ist nicht nur 34% kürzer. Es ist einfach genau richtig.

Challenge: handle = interface to many production/testing steps

- Handle has to fit assembly jigs, transport and storage system, test systems
- Problem: three different test systems, two of which had been partly designed beforehand (one needs very flat handles to hold vacuum, one has to use alternative protective cap → additional precision holes)

Low-Tech Woes: Gluing

- Delicate interplay of amount of glue and glue viscosity
 - Ideal: full contact area wetted \rightarrow best mechanical and thermal contact
 - Too much glue or glue too liquid → glue may be sucked into vacuum holes, modules glued to assembly jig while curing
 - Lesson: control and document glue preparation (mixing, pot time) and environment (temperature, humidity)

Logistics

Analyze production workflow

- Production may get stuck between steps → define efficient handshake (e.g. as part of bookkeeping → next slide)
- Production throughput limited by slowest process

 → check for bottlenecks (production steps, supply chain)
- Production could be interrupted by single point of failure

 provide fallback solutions, backup for trained personnel

Meticulous documentation of each step is a must!

Purpose: tracking of production problems

Bookkeeping tools

- Many tools available: paper logbooks, paper travelers, e-logs, Wikis, Google docs, local database, project database, full product lifecycle management
- **Goal 1:** avoid information **cluttering** and **duplication** \rightarrow centralize
- Goal 2: keep threshold to enter information low (for physicists and technicians) → simple, easy to use, in local language

Silicon Pixel Modules for the CMS Phase I Upgrade: Lessons Learned

Summary & Conclusions

- Detector construction projects: complex process with many (known and unknown) unknowns
- Example: production of **pixel detector modules** for the CMS Phase I upgrade \rightarrow many old and some new lessons learned
 - Material supplies: dealing with various vendors, varying quality
 - Quality control: material and processes, feedback loops
 - Mechanical precision and gluing
 - Logistics and bookkeeping