

A New Pixel Detector for the CMS Experiment

Teilchenphysik-Kolloquium Universität Heidelberg, May 8, 2012

> Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology

www.kit.edu

The Large Hadron Collider: Present and Future

Pixel Detectors for Collider Experiments

The CMS Pixel Detector

The CMS Phase 1 Pixel Upgrade

CMS Pixel Upgrade: Current Status and Plans

The Large Hadron Collider: Present and Future

I HC - the Large Hadr

LHC Accelerator:

proton-proton and lead-lead collisions

ALICE Experiment: heavy ion physics

CMS Experiment: multi-purpose experiment

CERN accelerator complex, about 100 m under ground LHC circumference: ~27 km CP violation and B physics

ATLAS Experiment: multi-purpose experiment

> rich Husemann mphysik (IEKP)

the CMS Experiment

LHC Luminosities

LHC 2010/2011: 7 TeV

- Record instantaneous lumi: 3.5×10³³ cm⁻² s⁻¹
- About 5 fb⁻¹ (= 800,000 top pairs) per experiment
- Exceeding expectations

LHC 2012: 8 TeV

- Luminosity ramped up in record time
- Already >1 fb⁻¹ delivered
- Expected for full year: 15–20 fb⁻¹

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

LHC Physics 2010/11: Rediscovery of the SM

- Precision measurements of W and Z bosons, top quarks, boson pairs, etc.
- Jump in center of mass energy (2 TeV \rightarrow 7 TeV): many searches for physics beyond the standard model

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots]

LHC Physics 2011/12: The Hunt for the Higgs

- 2011: Large increase in integrated luminosity: 35 pb⁻¹ \rightarrow 5 fb⁻¹
- 2012: Center of mass energy further increased: 7 TeV \rightarrow 8 TeV
- Even more searches for new physics \rightarrow no smoking gun yet...

LHC Challenges Ahead

High luminosity comes at a price: pileup

LHC design luminosities

- 2808 proton bunches per beam, 25 ns spacing
- Instantaneous luminosities up to 10³⁴ cm⁻² s⁻¹
- Up to 25 simultaneous proton-proton collisions per bunch crossing ("pileup")

Pileup 2012:

- 1380 bunches per beam with 50 ns bunch spacing
- Already now: 25–32 pileup vertices

$Z \to \mu \mu$ with 25 Pileup Vertices

Karlsruhe Institute of T

LHC Long Term Plan

- Goal: deliver 3000 fb⁻¹ of integrated luminosity by 2030 \rightarrow at least 5× increase in instantaneous luminosity
- Detectors must be upgraded: current detectors suffer from aging and radiation damage, keep similar performance, improve radiation hardness at high luminosity
- According to current planning: three long LHC shutdowns for upgrades
 - 2013/14: LHC center of mass energy to 13–14 TeV
 - 2018: several machine upgrades
 - After 2022: start of high-luminosity phase of the LHC (HL-LHC)

LHC High Luminosity Upgrade: Physics Case

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

Pixel Detectors for Collider Experiments

Charged Particle Trajectory Detector Layer Charged Particle Trajectory Detector Layer A B-tagging Identify their los B-ragging Detector and/or

distances (~5 cm) from collision point: precise reconstruction of vertices

Charged particle tracking at large distances (~1 m): precise momentum measurement

Space Point

Vertex

Collision

Tracking, Vertexing, and B-Tagging

Tracking & vertexing Charged particle tracking at small

Iarge Secondary Vertex Decay Length Protons Primary Vertex B-tagging: Identify hadrons with b

Tracks

- Identify hadrons with b-quarks via their long lifetimes (picoseconds)
- Parts of the tracks from B hadron decays: large impact parameters and/or displaced secondary vertex

> Z

Protons

LHC Choice for Tracking Detectors: Silicon

- Innermost part of the tracking detectors: silicon hybrid pixel detectors
 - Detector = semiconductor diode with pn junction in reverse bias \rightarrow depletion zone
 - Charged particles ionize detector material \rightarrow electron/hole pairs induce signal

Tracking and Vertexing: Why Pixels?

- Resolution and material budget
 - Small pixels \rightarrow high hit resolution \rightarrow high track and vertex resolution
 - Material budget: 3D space point with a single detector layer
 - Tracking advantages of highly segmented detectors
 - Low hit occupancy (= fraction of bunch crossings in which a pixel is hit) → low hit combinatorics
 - "Track seed" from region with smallest probability for wrong assignment of hits to tracks

Rule of thumb: tracking works for occupancies of 1% or less

Silicon Pixel Detectors – A Brief History

Hybrid Pixel Detectors

- Silicon sensor and readout chip: separate devices
- Readout chip: one circuit per pixel
- Interconnects: solder bumps

First ideas for a hybrid pixel detector

- Gaalema (1984): first pixelated X-ray detector (Hughes Aircraft Co.) ...
- In followed by first serious work on hybrid pixel detectors for particle physics at CERN, SLAC, LBNL
- Late 1980ies: pixel detectors = tracking option for SSC and LHC
 - CERN: R&D Collaboration (RD19)
 - First small scale applications: fixed target and LEP
- Today: ALICE, ATLAS, and CMS use hybrid pixel detectors

For a historical review see: E. Heijne, NIM A465 (2001) 1

First Experience: Heavy Ion Pixel Telescope

- First use case at CERN: WA94/WA97/NA57 fixed target experiments strangeness production in heavy ion collisions (Pb)
- Occupancy similar to LHC, but much smaller rate
- Pixel telescope: 7 layers parallel, 500,000 channels total

Omega2 Pixel Array and Readout Electronics

First Long-Term Test: DELPHI

Upgrade of DELPHI micro-vertex detector for LEP2:

The CMS Pixel Detector

CMS – Compact Muon Solenoid

CMS Photo Gallery

CMS Tracker Design

- General CMS tracker design
 - Large all-silicon tracker, > 200 m² of active area
 - High magnetic field $(3.8 \text{ T}) \rightarrow \text{excellent momentum resolution}$
- Pixel detector design considerations in CMS
 - Small radii (4–11 cm) \rightarrow excellent impact parameter resolution, low cost
 - High magnetic field \rightarrow exploit charge sharing through Lorentz drift

The Current CMS Pixel Detector

- Separated into barrel and forward pixel detectors
 - BPIX: three layers
 - FPIX: two times two disks
- Mechanics:
 - Light-weight and modular
 - "Easy" installation/removal

FPIX Half Disk

Pixel Sensor: Precision Through Sharing

- CiS n^+ -in-n sensor \rightarrow collect electrons
- Improve hit resolution by charge sharing:
 - Almost quadratic pixels: $100x150 \ \mu m^2 \rightarrow similar resolution in r\phi$ and z
 - Exploit strong electron Lorentz drift in 3.8 T magnetic field
 - Most accurate measurement of pulse height: analog readout

Current sensor technology sufficient for Phase 1 upgrade

The PSI46 Readout Chip

Chip features

- 250 nm IBM process
- Area: 7.9 mm × 9.8 mm, five metal layers
- Analog readout at 40 MHz
- Basic layout
 - Pixel array: 52 columns, 80 pixel unit cells in each column
 - Periphery: transfer and store pixel hits, trigger timestamp

Discriminator threshold: <2500 electrons</p>

Readout by double column and buffer sizes: serious rate limitations above 10³⁴ cm⁻² s⁻¹ at 50 ns bunch spacing (100 MHz/cm²)→ upgrade required!

CMS Barrel Pixel Module Signalcable-Powercable SMD-Components Module dimensions: 66.6 Token bit твм manager HDI High density interconnect Sensor 16×62 mm² 66,560 pixels X bump bonding: ROCs Read-out 26.0 mm² chips SiN Basestrips [W. Erdmann] full-module ≙ 16 ROCs

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

CMS Pixel Performance

Single hit efficiency: >99%, measured rφ resolution: 13 μm
 Data taking efficiency: 97% of pixel channels operational, 99% uptime

The CMS Phase 1 Pixel Upgrade

General Phase 1 Pixel Upgrade Strategy

Goal: similar pixel performance in much harsher environment

Modification	Impact
New digital readout chip	Front-end electronics ready for high rates
More layers: 3→4 barrel layers, 2×2→2×3 forward disks	More 3D pixel space points, more tracking redundancy
Smaller radius of innermost layer	Improved impact parameter resolution (key to excellent B-tagging at high pileup)
Improved mechanics, cooling, and powering	Reduced material budget: less multiple scattering, fewer photon conversion

29 05/08/2012 A New Pixel Detector for the CMS Experiment

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

New CMS Pixel Readout Chip

- Goal: overcome rate limitations of current readout chip (100 MHz/cm² → 250 MHz/cm²)
- Strategy: modest evolution of current chip (staying at 250 nm)
- First chip iteration:
 - Digital readout: 8-bit ADC for pulse height
 - 6th metal layer → reduce cross-talk, lower threshold
 - Larger buffers for data and time stamps
 - First version received from foundry, some minor issues, in testing phase
- Second chip iteration:
 - Improved column drain architecture
 - Submission planned in late 2012

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

Changes to Barrel Pixel Detector Mechanics

3 Sensor Layers (768 Modules)	4 Sensor Layers (1184 Modules)
Lightweight Mechanics	Ultra-Lightweight Mechanics
C ₆ F ₁₄ Cooling	CO ₂ Cooling
Support Tube with Readout/Control Electronics	Lightweight Support Tube, Electronics moved to η >2.2

New Central Beam Pipe

CMS Central beam pipe OD45 mm

> CMS Central beam pipe OD 59.6 mi present

[C. Schäfer, CERN]

Longer conical section \rightarrow smaller outer diameter

- Central part: 0.8 mm beryllium
- Lighter material in outer part: AlBe instead of stainless steel
- Installation in Long Shutdown 1 (2013/2014) → flexible scheduling of pixel installation

New Four-Layer Barrel Pixel Detector

- Two identical half-shells
- Layer positions:
 - 1. R = 29 mm, 12 faces
 - 2. R = 68 mm, 28 faces
 - 3. R = 109 mm, 44 faces
 - 4. R = 160 mm, 64 faces
- Innermost layer:
 - Radius reduced from 44 mm to 29 mm
 - 2.5 mm clearance to new beam pipe (outer diameter: 45 mm)
- New outermost layer: additional 3D space point at 160 mm

Pixel Services

- Detector "services" = all cables, pipes, optical fibers
- Most pixel services are "buried" deep in CMS detector
 - Must reuse existing power cables, optical fibers, cooling lines
 - But: need to supply power, cooling and readout to 1.9 times more readout chips
- Cooling solution: CO₂
- Powering solution: "high-voltage" power lines & DC-DC conversion
- Readout solution: 40 MHz analog readout → 320 MHz digital readout

DC-DC Conversion

- Power dissipation in the pixel detector
 - Front-end: digital and analog voltage
 - Leakage current through sensors due to radiation damage
 - Ohmic losses in cables
- Local down-conversion of voltages
 - AMISx ASIC (CERN): buck converter
 - Radiation hard, 80% conversion efficiency
 - Small power supply modification needed

DC-DC Converter PCB

Ultra-Light Mechanics and Support Tube

Mechanical structure

- Airex foam and carbon fiber
- CO₂ cooling integrated
- Mass of layer #1: 59 g including coolant \rightarrow 30% reduction

[S. Streuli, PSI]

Impact on Material Budget

- Central part (|η|<1.1): new fourlayer detector with less material than old three-layer detector
- Forward part: shifting of services on support tube further outward

Significant reduction of material budget

Impact on Tracking: Transverse Impact Parameter

- Old Geometry (no pileup)
- New Geometry
 (50 pileup vertices)

Upgraded pixel detector at 50 pileup vertices:

- As powerful as current detector at no pileup
- Better resolution for low momenta

Impact on B-Tagging: Compare ROC Curves

CMS Combined Secondary Vertex Tagger @ 50 Pileup Vertices

40 05/08/2012 A New Pixel Detector for the CMS Experiment

CMS Pixel Upgrade: Current Status and Plans

Pixel Project Status and Planning

- Immediate plans
 - Technical Design Report (Summer 2012): technology choices and physics case
 - Qualification of new components, especially new readout chip
 - Late 2012: ramp-up of barrel pixel module production lines → pre-series of all "ingredients": sensor, readout chip, HDI, cables, …
- Install new beam pipe during Long Shutdown 1 (LS 1)
- "Pilot blade" project (LS 1)
 - Install upgraded pixel modules at location foreseen for the third forward disk
 - in-situ test of the full chain

Space for Pilot Blade

[S. Kwan et al.]

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

Module Production: BPIX Layer 4 in Germany

- Plans for distributed barrel pixel module production → more logistics (current detector: PSI only)
 - Layers 1 and 2: Swiss consortium (PSI, ETH Zürich, U Zürich)
 - Layer 3: Italy/CERN/Taiwan/Finland
 - Layer 4: German consortium (DESY, U Hamburg, KIT, RWTH Aachen)

German consortium

- Two production lines, 350 modules each: UHH/DESY and KIT/RWTH
- Sharing development effort for precision tools, testing equipment, ...
- Macro-assembly of Layer 4 at DESY
- Investigations into cost-effective in-house bump bonding (DESY, KIT)
- Various test-beam studies (DESY, KIT)

High-Rate Beam Tests

- New pixel chip designed for high hit rates (200 MHz/cm²)
 - \rightarrow test high-rate performance a.s.a.p
- High-rate beam test:
 - 8-layer pixel telescope with single-chip modules
 - CERN H4IRRAD high rate test beam
 - KIT: trigger firmware, tracking and simulation software (based on EuDet telescope software)

[K. Harder, RAL]

Module Calibration with Am Source

- Pixel module calibration
 - Pulse height: linear with energy at all temperatures → precise charge sharing
 - Defined energy: characteristic X-rays

Module Calibration with X-Ray Tube

- Pixel module calibration
 - Pulse height: linear with energy at all temperatures → precise charge sharing
 - Defined energy: characteristic X-rays

Evaluation of Bump Bonding Options

- Bump bonding: most cost-intensive step in module production
- DESY and KIT (Institute for Data Processing and Electronics): in-house options for (part of) bump bonding process
- Currently investigating flip-chipping and gold-stud bumping

[Th. Blank, M. Caselle, S. Heitz, B. Leyrer, KIT]

48 05/08/2012

The CMS Tracker Beyond 2020

- Long Shutdown 3 (2021): preparation for High-Luminosity LHC
 - ATLAS and CMS: complete replacement of tracker
 - Challenge: trigger on interesting physics \rightarrow keep thresholds for key triggers low
 - CMS: exploit tracking information in the early trigger stages
- Novel concept: *p*_T modules
 - Goal: suppression of low-p_T tracks (< 1–2 GeV) for the trigger
 - Idea (R. Horisberger): local coincidence of two sandwiched silicon detector layers (strips + strips or strips + pixels)

Conclusions

