IKTP-Institutsseminar Technische Universität Dresden October 22, 2009

Search for Flavor Changing Neutral Currents in Top Quark Decays at CDF

Ulrich Husemann Kirchhoff-Institut für Physik, Univ. Heidelberg & Deutsches Elektronen-Synchrotron DESY

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Standard Model of Particle Physics

- Matter in the standard model: 12 fermions in three generations
 - Six quarks and their anti-particles
 - Six leptons and their anti-particles
- Forces in the standard model:
 - Strong force (carrier: gluon)
 - Electroweak force (carriers: photon, W[±] bosons, Z boson)
- Interactions = "currents" coupling to gauge bosons, e.g. electromagnetic current

3

Flavor Changing Neutral Currents

- Flavor changing neutral current (FCNC):
 - Transition: from a quark q of flavor A and charge
 Q to quark q' of flavor B with the same charge Q
 - Examples: $b \rightarrow s\gamma$, $t \rightarrow cH$, ...
- 1960s: only three light quarks (u,d,s) known, mystery in neutral kaon system:

Flavor Changing Neutral Currents

- Flavor changing neutral current (FCNC):
 - Transition: from a quark q of flavor A and charge
 Q to quark q' of flavor B with the same charge Q
 - Examples: $b \rightarrow s\gamma$, $t \rightarrow cH$, ...
- 1960s: only three light quarks (u,d,s) known, mystery in neutral kaon system:

- Solution: "GIM Mechanism" (Glashow, Iliopoulos, Maiani, 1970)
 - Fourth quark needed for cancellation in box diagram: prediction of charm quark
 - Cancellation exact if all quarks had the same mass: estimate of charm quark mass

Top FCNC & New Physics

- Top FCNC not at tree level, only in higher orders → very rare in SM: B(t→Zq) ≈ 10⁻¹⁴ (q=u,c)
- Top FCNC enhanced in many models of physics beyond the SM
 → signal at CDF = new physics
- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models
 - Supersymmetry: gluino/neutralino and squark in loop corrections

Top FCNC & New Physics

- Top FCNC not at tree level, only in higher orders → very rare in SM: B(t→Zq) ≈ 10⁻¹⁴ (q=u,c)
- Top FCNC enhanced in many models of physics beyond the SM
 → signal at CDF = new physics
- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models
 - Supersymmetry: gluino/neutralino and squark in loop corrections

Top FCNC & New Physics

- Top FCNC not at tree level, only in higher orders → very rare in SM: B(t→Zq) ≈ 10⁻¹⁴ (q=u,c)
- Top FCNC enhanced in many models of physics beyond the SM
 → signal at CDF = new physics
- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models
 - Supersymmetry: gluino/neutralino and squark in loop corrections

Model	BR $(t \rightarrow Zq)$			
Standard Model	$O(10^{-14})$			
q = 2/3 Quark Singlet	$O(10^{-4})$			
Two Higgs Doublets	$\mathcal{O}(10^{-7})$			
MSSM	$\mathcal{O}(10^{-6})$			
<i>R</i> -Parity violating SUSY	$\mathcal{O}(10^{-5})$			
[after J.A. Aguilar-Saavedra, Acta Phys. Polon. B35 (2004) 2695]				

Previous Searches for Top FCNC

• CDF Run I search:

F. Abe *et al.*, PRL **80** (1998) 2525.

- Signature: Z → I⁺ I⁻ + 4 jets (1 b-jet)
 → starting point for Run II analysis
- Limit on BR(t \rightarrow Zq): 33%

LEP searches:

P. Achard *et al.* (L3), Phys. Lett. **B549** (2002) 290.
G. Abbiendi *et al.* (Opal), Phys. Lett. **B521** (2001) 181.
J. Abdallah *et al.* (Delphi), Phys. Lett. **B590** (2004) 21.
A. Heister *et al.* (Aleph), Phys. Lett. **B453** (2002) 173.

- Anomalous single top production in e⁺e⁻ collisions
- Very similar results among all LEP experiments, best limit on BR(t→Zq): 13.7% (L3)

DØ: *t*-channel production \rightarrow top + 1 jet final state: W+2 jets

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Fop Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Tevatron Run II: 2001–2009 (2010?)

Fermi National Accelerator Laboratory – Aerial View

[Fermilab Visual Media Service]

- Proton-antiproton collider: $\sqrt{s} = 1.96$ TeV
- 36×36 bunches, collisions every 396 ns
- Record instantaneous peak luminosity: $372 \ \mu b^{-1} \ s^{-1}$ $(1 \ \mu b^{-1} \ s^{-1} = 10^{30} \ cm^{-2} \ s^{-1})$
- Integrated luminosity goal: 7.8–9.3 fb⁻¹ by 2010
- Running in 2011 currently under discussion: 12 fb⁻¹
- Two multi-purpose detectors: CDF and DØ

- Tevatron continues to perform extremely well:
 - More than 7 fb⁻¹ delivered by Tevatron as of October 11, 2009
 - More than 5.8 fb⁻¹ recorded by CDF

Institutsseminar IKTP, TU Dresden, 10/22/09 – U. Husemann: Search for Top FCNC

12

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Brief history of top quark discovery:

- 1977: Y discovery bottom quark
- 1980s: Searches for "light" top (mt < mw): isospin partner of bottom at PETRA, SppS, LEP, CDF Run 0
- 1992/3: Tevatron Run I starts, first indications for top quark production
- March 2, 1995: CDF and DØ announce top quark discovery

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

[Scientific American, September 1997]

VIOLENT COLLISION between a proton and an antiproton (*center*) creates a top quark (*red*) and an antitop (*blue*). These decay to other particles, typically producing a number of jets and possibly an electron or positron.

- The top is heavy: $m_t \approx 173 \text{ GeV}/c^2$ (40× m_b , approx. mass of gold atom)
- Mass close to scale of electroweak symmetry breaking (EWSB), top Yukawa coupling *f* ≈1:

$$\mathscr{L}_{\text{Yuk},t} = f \frac{v}{\sqrt{2}} \, \bar{t}_L t_R \equiv m_t \, \bar{t}_L t_R$$

(vacuum expectation value of Higgs field: $v/\sqrt{2} \approx 178$ GeV) → Important role in EWSB models

Top is the only "free" quark: lifetime shorter than hadronization time

$$\tau = \frac{1}{\Gamma} \approx \frac{1}{1.5 \, \text{GeV}} < \frac{1}{\Lambda_{\text{QCD}}} \approx \frac{1}{0.2 \, \text{GeV}}$$

 \rightarrow No spectroscopy of bound states \rightarrow Spin transferred to decay products

Top Pair Production at the Tevatron

Top production is rare: one top quark pair produced every 10 billion collisions

DES

85% q**q** → t**t**: 0000 15% gg → tī: 0000

Analyzing Top Quark Events

	₩- →	hadrons	τ	μe
hadrons		All Hadronic (S/B ≈ 0.04)	Lepton+ т	Lepton + Jets (S/B ≈ 1)
Ч		Lepton+ τ		
t 0 ⊐	L	epton + Jets (S/B ≈ 1)		Dilepton (S/B \approx 3)

- Top decay in the standard model: t → Wb (BR ≈ 100%)
- tt decay signatures characterized by W decays:
 - All-Hadronic: 45% of all decays, large QCD background
 - Lepton+Jets: 30% of all decays, the "gold-plated" channel
 - Dilepton: 5% of all decays, very clean, but small branching fraction
- Main background process: "W+Jets" (production of W bosons in association with jets)
- tt
 events contain two b quarks:
 "b-tagging" (identification of jets from b quarks) crucial

- High p_T electron identification:
 - Isolated charged particle track (no nearby tracks)
 - Almost all energy deposited in electromagnetic calorimeter
- High p_T muon identification:
 - Isolated charged particle track (no nearby tracks)
 - Little energy in calorimeters
 - "Stub" in dedicated muon detector
- Parton identification:
 - Reconstruct energies of jets, not partons
 - Jet energy scale (JES) correction: estimate parton energies from "raw" jet energies

Secondary Vertex B-Tagging

- CDF's standard "SecVtx" algorithm:
 - Long lifetime of B mesons: detect displaced secondary vertex
 - Main discriminant: significance of displacement in xy plane (L_{xy})

Top Basics: Mass and Cross Section

Top Cross Section (Lepton+Jets): Very Pure Top Sample

DESY

- Double SecVtx tag with 1.9 fb⁻¹: $\sigma_{t\bar{t}} = 8.8$ pb
- Background cocktail used in many top analyses
- Normalization mode for FCNC analysis

Top Basics: Mass and Cross Section

Top Cross Section (Lepton+Jets): Very Pure Top Sample

DESY

- Double SecVtx tag with 1.9 fb⁻¹: $\sigma_{t\bar{t}} = 8.8$ pb
- Background cocktail used in many top analyses
- Normalization mode for FCNC analysis

Top Basics: Mass and Cross Section

Top Cross Section (Lepton+Jets): Very Pure Top Sample

DESY

- Double SecVtx tag with 1.9 fb⁻¹: $\sigma_{t\bar{t}} = 8.8$ pb
- Background cocktail used in many top analyses
- Normalization mode for FCNC analysis

Top Mass Combination 2009: 0.7% Uncertainty

CDF's Top Properties Program

Top Physics Makes Prime Time!

DESY

Top Physics Makes Prime Time!

DESY

24

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Search for FCNC in Top Quark Decays

Search for FCNC in Top Quark Decays

Basic Ingredients: Signal and Background

> Round I: Counting Experiment

> > Round II: Template Fit

Institutsseminar IKTP, TU Dresden, 10/22/09 – U. Husemann: Search for Top FCNC

24

- Basic question: how often do top quarks decay into Zq?
- Result: discovery of top FCNC or limit on branching fraction B(t → Zq), where q=u,c
- Selected decay channels for $t\bar{t} \rightarrow Zq$ Wb:
 - Z → charged leptons: very clean signature, lepton trigger
 - W → hadrons: large branching fractions, no neutrinos (→ event can be fully reconstructed)
- Final signature: Z + ≥4 jets

Z Boson Reconstruction

Electron Coverage

Muon Coverage

- Simple trigger: single e/μ with $p_T > 18$ GeV/c
- Sharp Z resonance, good lepton p_T resolution \rightarrow mass window: 76 GeV/ $c^2 < M_{\parallel} < 106$ GeV/ c^2
- Enhancing the Z acceptance for this analysis:
 - Allow second lepton to be isolated track

 → doubles Z acceptance w.r.t. standard lepton selection
 - Correct track momentum with calorimeter energy \rightarrow 3% more dielectron pairs

Z Boson Reconstruction

Electron Coverage

Muon Coverage

- Simple trigger: single e/μ with $p_T > 18$ GeV/c
- Sharp Z resonance, good lepton p_T resolution \rightarrow mass window: 76 GeV/ $c^2 < M_{\parallel} < 106$ GeV/ c^2
- Enhancing the Z acceptance for this analysis:
 - Allow second lepton to be isolated track

 → doubles Z acceptance w.r.t. standard lepton selection
 - Correct track momentum with calorimeter energy \rightarrow 3% more dielectron pairs

DESY

DESY

Institutsseminar IKTP, TU Dresden, 10/22/09 – U. Husemann: Search for Top FCNC

27

Mass x² Details

- Jet-parton assignment unknown:
 - Check all 12 possible combinations of four highest E_T jets
 - Pick combination with lowest mass χ^2
- "Fix" reconstructed W/Z masses
 - Vary momenta of W/Z daughters within resolution to adjust masses
 - Improves mass resolution → better sensitivity
- Widths reflect mass resolutions as measured in MC simulation:
 - $\sigma_{W,rec} = 15 \text{ GeV}/c^2$
 - $\sigma_{t \rightarrow Wb, rec} = 24 \text{ GeV}/c^2$
 - $\sigma_{t \rightarrow Zq, rec} = 21 \text{ GeV}/c^2$

How do you search for a signal that is likely not there? Understand the background!

Standard Model Background	Signature	Importance	Estimated from
Z+Jets Production	Real Z boson, very similar to FCNC signal	Dominant, most difficult to estimate	Data (normalizations) & MC (shapes)

■ How do you search for a signal that is likely not there? → Understand the background!

Standard Model Background	Signature	Importance	Estimated from
Z+Jets Production	Real Z boson, very similar to FCNC signal	Dominant, most difficult to estimate	Data (normalizations) & MC (shapes)
SM tī Production (dilepton, lepton+jets)	No real Z boson, need extra jets and/ or "fake" lepton	Small, more important if b-tag required	Monte Carlo

How do you search for a signal that is likely not there? → Understand the background!

Standard Model Background	Signature	Importance	Estimated from
Z+Jets Production	Real Z boson, very similar to FCNC signal	Dominant, most difficult to estimate	Data (normalizations) & MC (shapes)
SM tī Production (dilepton, lepton+jets)	No real Z boson, need extra jets and/ or "fake" lepton	Small, more important if b-tag required	Monte Carlo
Diboson Production: WZ, ZZ	Real Z boson	Small, more important if b-tag required (Z→bb̄)	Monte Carlo

How do you search for a signal that is likely not there? → Understand the background!

Standard Model Background	Signature	Importance	Estimated from
Z+Jets Production	Real Z boson, very similar to FCNC signal	Dominant, most difficult to estimate	Data (normalizations) & MC (shapes)
SM tī Production (dilepton, lepton+jets)	No real Z boson, need extra jets and/ or "fake" lepton	Small, more important if b-tag required	Monte Carlo
Diboson Production: WZ, ZZ	Real Z boson	Small, more important if b-tag required (Z→bb̄)	Monte Carlo
Others: W+Jets, WW Production	No real Z boson	Negligible	Monte Carlo & Data

Z+Jets Production

MC tool for Z+Jets: ALPGEN

- Modern MC generator for multiparticle final states (exact 2→n matrix elements), PYTHIA for parton showers
- "MLM matching": remove overlap between jets from matrix element and partons showers

• Comparing ALPGEN with data:

- Leading order generator: no absolute prediction for cross section
- Underestimate of number of events with large jet multiplicities, large uncertainties
- Our strategy: only shapes of kinematic distributions from MC, normalization from control samples in data

Separating Signal from Background

• Mass χ^2 : combination of mass constraints – best discriminator

DESY

$$\chi^{2} = \left(\frac{m_{W,\text{rec}} - m_{W}}{\sigma_{W}}\right)^{2} + \left(\frac{m_{t \to Wb,\text{rec}} - m_{t}}{\sigma_{t \to Wb}}\right)^{2} + \left(\frac{m_{t \to Zq,\text{rec}} - m_{t}}{\sigma_{t \to Zq}}\right)^{2}$$

- Transverse mass: top decays (including FCNC) are more central than Z+jets $M_T = \sqrt{\left(\sum E_T\right)^2 - \left(\sum \vec{p}_T\right)^2}$
- Jet transverse energies: FCNC signal has four "hard" jets, background processes: jets have to come from gluon radiation

- Requiring a SecVtx b-tag?
 - Advantage: Better discrimination against Z+jets
 - Disadvantage: Reduction of data sample size
- Solution: use both!
 - Split sample in tagged and anti-tagged
 - Combine samples in limit calculation
- Need to take into account event migration between samples
 - Correlated systematic uncertainties: affect samples in same direction
 - Anti-correlated uncertainties: move events between samples (e.g. b-tagging efficiency)

32

Acceptance Algebra: Catch 22?

- Question: how do we convert event counts into limit on B(t→Zq)?
 - Circular dependency #1: Limit calculation requires signal acceptance, but signal acceptance depends on limit
 - Circular dependency #2: Measure limit on fraction of tt production cross section, but cross section changes with changing FCNC contribution

Acceptance Algebra: Catch 22?

- Question: how do we convert event counts into limit on B(t→Zq)?
 - Circular dependency #1: Limit calculation requires signal acceptance, but signal acceptance depends on limit
 - Circular dependency #2: Measure limit on fraction of tt production cross section, but cross section changes with changing FCNC contribution
- Solution: "running acceptance" functional form of dependencies implemented in limit machinery
 - Signal acceptance dynamically adjusted as a function of B(t→Zq)
 - Signal normalized to measured tt
 production cross section
 measurement
 - tt
 tr
 cross section re-interpreted as a function of BR(t→Zq) to allow for FCNC contribution

Search for FCNC in Top Quark Decays

Basic Ingredients: Signal and Background

> Round I: Counting Experiment

> > Round II: Template Fit

Institutsseminar IKTP, TU Dresden, 10/22/09 – U. Husemann: Search for Top FCNC

34

Blind Counting Experiment: Outline

- Blind analysis: avoid biases by looking into the data too early
- Analysis strategy :
 - Blind signal region: Z + ≥ 4 jets
 (minus control region in Z + ≥ 4 jets)
 - Optimization on data control regions and Monte Carlo (MC) simulation only (event selection, prediction of backgrounds, systematic uncertainties)
 - Very last step: "opening the box", i.e. look into signal regions in data (tagged and anti-tagged)

- Selection cuts optimized for best expected limit (in the absence of an FCNC signal)
 - Separately for tagged and antitagged sample
 - Expected 95% C.L. upper limit on B(t→Zq): 6.8% ± 3.0% (L3 limit: 13.7%)
- Background estimate: from data
 - Fit to tail of mass χ² distribution (little FCNC signal)
 - Use mass χ² shape from MC to estimate total background
 - Tagging rate: similar technique

Final Event Selection

Kinematic Variable Optimized Cut

Z Mass	\in [76,106] GeV/ c^2
Leading Jet E_T	$> 40 \mathrm{GeV}$
Second Jet E_T	$> 30 \mathrm{GeV}$
Third Jet E_T	$> 20 \mathrm{GeV}$
Fourth Jet E_T	> 15 GeV
Transverse Mass	$> 200 \mathrm{GeV}$
$\sqrt{\chi^2}$	< 1.6 (<i>b</i> -tagged)
	< 1.35 (anti-tagged)

• Opening the box with 1.12 fb⁻¹

- Event yield consistent with background only
- Fluctuated about 1σ high: slightly unlucky
- Result: The World's Best Limit!

B(t→Zq) < 10.4% @ 95% C.L.

- Expected limit: 6.8% ± 3.0%
- 25% better than L3 (13.7%)
- 3x better than CDF Run I (33%)

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20 ± 6
Anti-Tagged Selection	12	$7.7{\pm}1.8$
Tagged Selection	4	$3.2{\pm}1.1$

Mass χ² (95% C.L. Upper Limit)

Search for FCNC in Top Quark Decays

Round I: Counting Experiment

Round II: Template Fit

- 70% more data: update with 1.9 fb⁻¹
- More sensitivity: template fit to $\sqrt{\chi^2}$ shape
 - Exploit full shape information
 - Reduce sensitivity to background normalization
- Build on previous experience:
 - Same event selection
 - Same acceptance algebra
 - Same method of calculating (most) systematic uncertainties

Mass x² Template Fitting

- Strategy: fit signal and background templates to mass χ² distribution → extract B(t→Zq)
- Advantage: reduced uncertainty
 - Dominant uncertainty in counting experiment: absolute prediction of Z +Jets background
 - Fit total background and tagging rate
 → uncertainty reduced
- Challenge: shape systematics
 - Need to account for systematic uncertainties of template shape (in addition to rate uncertainties)
 - Investigated many sources, dominant effect: jet energy scale

41

Shape Uncertainties

- Dominant uncertainty: jet energy scale (JES)
 - Translation from "raw" jet energy to partons energy
 - Many corrections: detector effects, neutral particles, underlying event, out-of-cone partons …
 → JES uncertainty ±σ_{JES}
- Much smaller uncertainty: ALPGEN Z+jets MC simulation
 - Tunable parameters: factorization/ renormalization scale, vertex Q² scale
 - Big effect on jet multiplicity, small effect on mass χ² shape

43

- Treatment of shape uncertainties:
 - Assume that all shape uncertainties are due to JES
 - All others: much smaller effect \rightarrow treated as systematic uncertainty
- Template fit: allow JES to float
 - Fitter knows how to "morph" templates → linear interpolation between normalized cumulative distribution functions (C.D.F.)
 - JES shift = free parameter in the fit

- Challenge: control shape uncertainties but don't "morph away" a possible small signal
- Solution: add a control region
 - Definition: event fails at least one optimized cut (jet E_T , M_T)
 - Only 12% FCNC signal, but 67% Z+jets

- Challenge: control shape uncertainties but don't "morph away" a possible small signal
- Solution: add a control region
 - Definition: event fails at least one optimized cut (jet E_T , M_T)
 - Only 12% FCNC signal, but 67% Z+jets
- Additional benefit: constrain Z+jets background
 - Trust MC within a jet bin, but not across jet bins
 - Use amount of Z+jets found in control region to constrain signal regions to within 20%

- Interpretation of fitted B(t→Zq): Feldman-Cousins (FC) method [G.J. Feldman, R.D. Cousins, Phys. Rev. D57 (1998) 3873]
- FC answers the question: "What range of true values are likely to lead to the fitted value?"
- FC features:
 - Measurement or limit \rightarrow data decide
 - Coverage of confidence intervals guaranteed
- Our implementation:
 - Includes systematic uncertainties
 - Based on "pseudo-experiments"

- Interpretation of fitted B(t→Zq): Feldman-Cousins (FC) method [G.J. Feldman, R.D. Cousins, Phys. Rev. D57 (1998) 3873]
- FC answers the question: "What range of true values are likely to lead to the fitted value?"
- FC features:
 - Measurement or limit \rightarrow data decide
 - Coverage of confidence intervals guaranteed
- Our implementation:
 - Includes systematic uncertainties
 - Based on "pseudo-experiments"

- Interpretation of fitted B(t→Zq): Feldman-Cousins (FC) method [G.J. Feldman, R.D. Cousins, Phys. Rev. D57 (1998) 3873]
- FC answers the question: "What range of true values are likely to lead to the fitted value?"
- FC features:
 - Measurement or limit \rightarrow data decide
 - Coverage of confidence intervals guaranteed
- Our implementation:
 - Includes systematic uncertainties
 - Based on "pseudo-experiments"

- Interpretation of fitted B(t→Zq): Feldman-Cousins (FC) method [G.J. Feldman, R.D. Cousins, Phys. Rev. D57 (1998) 3873]
- FC answers the question: "What range of true values are likely to lead to the fitted value?"
- FC features:
 - Measurement or limit \rightarrow data decide
 - Coverage of confidence intervals guaranteed
- Our implementation:
 - Includes systematic uncertainties
 - Based on "pseudo-experiments"

What are Pseudo-Experiments?

- Simulated experiments from MC
- Smear MC templates according to all known correlations and systematic uncertainties
- * Draw Poisson random numbers from smeared MC templates \rightarrow mass χ^2 distribution
- ★ Fit as in data \rightarrow "measured" B(t \rightarrow Zq)
- Rinse and repeat...

Fit to the Data

Best Fit to Mass χ²

FCNC Feldman-Cousins Band (95% C.L.)

Summary

B(t→Zq) < 3.7% @ 95% C.L.

- Expected limit: 5.0% ± 2.2%
- Order of magnitude improvement over CDF Run I (33%)
- Almost 4× better than LEP (13.7%)

Institutsseminar IKTP, TU Dresden, 10/22/09 – U. Husemann: Search for Top FCNC

Summary

Institutsseminar IKTP, TU Dresden, 10/22/09 – U. Husemann: Search for Top FCNC

Summary

Large Hadron Collider (LHC):

- Top FCNC searches can (and should!) be re-done at the LHC
- ATLAS and CMS have already studied their FCNC sensitivities
- ATLAS study on sensitivity for top FCNC (1 fb⁻¹ at 14 TeV)
 - Improvement of current limits on BR(t→Zq) by 1–2 orders of magnitude
 - Entering interesting regime of 10⁻³ to 10⁻⁴ → exclusion of first theoretical models?
 - Caveat: so far only MC studies, first data to come end of this year

Top FCNC Sensitivity in ATLAS •Zq) 95% C.L. **EXCLUDED** ± ± 10^{−1} REGIONS CDF **ZEUS** 10-2 ATLAS (1 fb⁻¹) (q=u only) <u>והוהוהוהוהוהוהוהוהוהו</u>ה H1 10-3 (q=u only) CDF 10-4 (2 fb⁻¹) 10-5 10-4 10-3 10-2 10-5 10-1 B(t→γq) [ATLAS CSC Book, CERN-OPEN-2008-20]

49

Conclusions

- Top flavor changing neutral current (FCNC) decays
 - Extremely rare in the standard model
 - Enhanced in theories beyond the standard model → any signal: new physics
- First Tevatron Run II search for FCNC t → Zq in top quark decays
 - Event signature: $Z + \ge 4$ jets
 - Mass x² to separate signal from background
- No evidence for top FCNC found
 - World's best limit: BR(t→Zq) < 3.7% at 95% C.L.
 - Analysis published in Phys. Rev. Lett. **101** (2008) 192002