Experimental Particle Physics Seminar University of Pennsylvania, October 17, 2007

Search for Flavor Changing Neutral Currents in Top Quark Decays at CDF

Ulrich Husemann Yale University

Outline of the Talk

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Outline of the Talk

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Standard Model of Particle Physics

- Matter in the standard model:12 fermions in three generations
 - Six quarks and their anti-particles
 - Six leptons and their anti-particles
- Forces in the standard model:
 - Strong force (carrier: gluon)
 - Electroweak force (carriers: photon, W[±] bosons, Z boson)
- Interactions can be described by "currents" coupling to gauge bosons, e.g. electromagnetic current

Flavor Changing Neutral Currents

- Flavor changing neutral current (FCNC) interactions:
 - Transition from a quark of flavor A and charge Q to quark of flavor B with the same charge Q
 - Examples: $b \rightarrow s\gamma$, $t \rightarrow cH$, ...

 1960s: only three light quarks (u,d,s) known, mystery in neutral kaon system:

- Solution: "GIM Mechanism" (Glashow, Iliopoulos, Maiani, 1970)
 - Fourth quark needed for cancellation in box diagram: prediction of charm quark
 - Cancellation would be exact if all quarks had the same mass: estimate of charm quark mass

FCNC in the Standard Model (I)

Standard model: no FCNC at Lagrangian level

Massless theory: weak neutral current is flavor-diagonal

$$J_{\mu}^{\text{NC}} = J_{\mu}^{3} - 2\sin^{2}\theta_{\text{W}} j_{\mu}^{\text{em}} = \bar{u} \left[\frac{1}{2} \gamma_{\mu} (1 - \gamma_{5}) - \frac{4}{3} \sin^{2}\theta_{\text{W}} \gamma_{\mu} \right] u - \bar{d} \left[\frac{1}{2} \gamma_{\mu} (1 - \gamma_{5}) - \frac{2}{3} \sin^{2}\theta_{\text{W}} \gamma_{\mu} \right] d$$

- Quark masses via Higgs mechanism:
 - Eigenstates of electroweak interactions are not mass eigenstates

$$\mathcal{L}_{\text{Yuk}} = -m_u^{\alpha\beta} \ \bar{u}_{\text{L}}^{\prime\alpha} u_{\text{R}}^{\prime\beta} - m_d^{\alpha\beta} \ \bar{d}_{\text{L}}^{\prime\alpha} d_{\text{R}}^{\prime\beta} \\ -\frac{1}{\sqrt{2}} f_u^{\alpha\beta} \ \bar{u}_{\text{L}}^{\prime\alpha} h(x) u_{\text{R}}^{\prime\beta} - \frac{1}{\sqrt{2}} f_d^{\alpha\beta} \ \bar{d}_{\text{L}}^{\prime\alpha} h(x) d_{\text{R}}^{\prime\beta} + \text{h.c.}$$

$$\text{Higgs Couplings}$$

Unitary transformation of Lagrangian to mass basis, i.e. for physical particles:

$$ar{u}_{
m L} = ar{u}_{
m L}' \, \mathbf{U}_{
m L}^u \qquad u_{
m R} = \mathbf{U}_{
m R}^{u\dagger} \, u_{
m R}' \qquad \mathbf{m}_u = \mathbf{U}_{
m L}^{u\dagger} \, \mathbf{m}_u' \, \mathbf{U}_{
m R}^u$$
 $ar{d}_{
m L} = ar{d}_{
m L}' \, \mathbf{U}_{
m L}^d \qquad d_{
m R} = \mathbf{U}_{
m R}^{d\dagger} \, d_{
m R}' \qquad \mathbf{m}_d = \mathbf{U}_{
m L}^{d\dagger} \, \mathbf{m}_d' \, \mathbf{U}_{
m R}^d$

- Kinetic terms: unchanged
- Higgs couplings proportional to mass terms: no flavor changing Higgs couplings
- Neutral currents have same structure as kinetic terms: unchanged → no FCNC

FCNC in the Standard Model (II)

 Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix (obtained from transformation of charged current to mass basis):

$$J_{\mu}^{\text{CC}} = \bar{u}' \left(\frac{1}{2} \gamma_{\mu} \left(1 - \gamma_{5} \right) \right) d' = \bar{u}'_{\text{L}} \gamma_{\mu} d'_{\text{L}} = \bar{u}_{\text{L}} \mathbf{U}_{\text{L}}^{u\dagger} \gamma_{\mu} \mathbf{U}_{\text{L}}^{d} d_{\text{L}} = \bar{u}_{\text{L}} \gamma_{\mu} \mathbf{V}_{\text{CKM}}^{c} d_{\text{L}},$$

CKM matrix: unitary 3×3 matrix

$$\mathbf{V}_{ ext{CKM}} = egin{pmatrix} V_{ ext{ud}} & V_{ ext{us}} & V_{ ext{ub}} \ V_{ ext{cd}} & V_{ ext{cs}} & V_{ ext{cb}} \ V_{ ext{td}} & V_{ ext{ts}} & V_{ ext{tb}} \end{pmatrix} \quad ext{with}$$

$$\mathbf{V}_{\mathrm{CKM}} \cdot \mathbf{V}_{\mathrm{CKM}}^{\dagger} = \mathbf{V}_{\mathrm{CKM}}^{\dagger} \cdot \mathbf{V}_{\mathrm{CKM}} = \mathbf{1}$$

yields unitarity relations, e.g. the unitary triangle of flavor physics (1st vs. 3rd column)

$$V_{\rm ud}^* V_{\rm ub} + V_{\rm cd}^* V_{\rm cb} + V_{\rm td}^* V_{\rm tb} = 0$$

or (used in top FCNC):

$$V_{cd}^* V_{td} + V_{cs}^* V_{ts} + V_{cb}^* V_{tb} = 0$$

FCNC in the Standard Model (III)

C,U

FCNC are allowed via higher order mechanisms such as penguin diagrams, but heavily suppressed

- Suppression mechanism 1: GIM
 - Penguin matrix element depends on universal functions of single parameter $x_i = m_i^2/m_W^2$

$$\mathcal{M} \propto F(x_{\rm d}) V_{\rm cd}^* V_{\rm td} + F(x_{\rm s}) V_{\rm cs}^* V_{\rm ts} + F(x_{\rm b}) V_{\rm cb}^* V_{\rm tb},$$

Top FCNC Penguin

Compare to CKM unitarity relation:

$$V_{cd}^* V_{td} + V_{cs}^* V_{ts} + V_{cb}^* V_{tb} = 0$$

Exact cancellation if masses of b, s, and d quarks were the same

- Quark masses more similar for down-type than for up-type: top FCNC more strongly suppressed than bottom FCNC, e.g. $BR(t \rightarrow Zq) \approx 10^{-14} \text{ vs. } BR(b \rightarrow s\gamma) \approx 10^{-4}$
- Suppression mechanism 2: smallness of relevant CKM matrix elements

$$|V_{\rm cd}^*V_{\rm td}| \approx 0.002, \ |V_{\rm cs}^*V_{\rm ts}| \approx 0.04, \ |V_{\rm cb}^*V_{\rm tb}| \approx 0.04$$

FCNC & New Physics

FCNC are enhanced in many models of physics beyond the SM

- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models: modified Higgs mechanism
 - Flavor changing Higgs couplings allowed at tree level
 - Virtual Higgs in loop corrections
 - Supersymmetry: gluino/neutralino and squark in loop corrections

Model	$\mathbf{BR}(t \to Zq)$
Standard Model	$\mathcal{O}(10^{-14})$
q = 2/3 Quark Singlet	$\mathcal{O}(10^{-4})$
Two Higgs Doublets	$\mathcal{O}(10^{-7})$
MSSM	$\mathcal{O}(10^{-6})$
<i>R</i> -Parity violating SUSY	$\mathcal{O}(10^{-5})$

[after J.A. Aguilar-Saavedra, Acta Phys. Polor **B35** (2004) 2695]

FCNC & New Physics

FCNC are enhanced in many models of physics beyond the SM

- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models: modified Higgs mechanism
 - Flavor changing Higgs couplings allowed at tree level
 - Virtual Higgs in loop corrections
 - Supersymmetry: gluino/neutralino and squark in loop corrections

Model	$\mathbf{BR}(t \to Zq)$
Standard Model	$\mathcal{O}(10^{-14})$
q = 2/3 Quark Singlet	$\mathcal{O}(10^{-4})$
Two Higgs Doublets	$\mathcal{O}(10^{-7})$
MSSM	$\mathcal{O}(10^{-6})$
<i>R</i> -Parity violating SUSY	$\mathcal{O}(10^{-5})$

[after J.A. Aguilar-Saavedra, Acta Phys. Polor **B35** (2004) 2695]

FCNC & New Physics

FCNC are enhanced in many models of physics beyond the SM

- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models: modified Higgs mechanism
 - Flavor changing Higgs couplings allowed at tree level
 - Virtual Higgs in loop corrections
 - Supersymmetry: gluino/neutralino and squark in loop corrections

Model	$\mathbf{BR}(t \to Zq)$
Standard Model	$\mathcal{O}(10^{-14})$
q = 2/3 Quark Singlet	$\mathcal{O}(10^{-4})$
Two Higgs Doublets	$\mathcal{O}(10^{-7})$
MSSM	$\mathcal{O}(10^{-6})$
<i>R</i> -Parity violating SUSY	$\mathcal{O}(10^{-5})$

[after J.A. Aguilar-Saavedra, Acta Phys. Polor **B35** (2004) 2695]

Experimental Tests of FCNC

- Experimental tests of FCNC interactions: sensitive probes of new physics
 - Any signal above SM expectations would indicate new physics
 - Measurements constrain allowed phase space for new physics models
- Two types of searches for FCNC in the top sector:
 - Search for single top production (LEP, HERA, DØ)
 - Search for top quark decay via FCNC (CDF)
- Experiments usually report limits on
 - Branching fractions for specific processes, e.g. $BR(t \rightarrow Zq)$
 - Coupling parameters of effective Lagrangian, e.g. for tZq coupling

$$\mathcal{L}_{\text{eff}} = -\frac{g}{2\cos\theta_W} \cdot \kappa \cdot \left(x_L \cdot \bar{q}_L \gamma_\mu t_L + x_R \cdot \bar{q}_R \gamma_\mu t_R \right) Z^\mu + \dots$$

Previous Searches for Top FCNC

CDF Run I search:

F. Abe et al., PRL 80 (1998) 2525.

- Signature: $Z \rightarrow I^+I^- + 4$ jets (1 b-jet)
- Limit on BR(t→Zq): 33%

LEP searches:

P. Achard et al. (L3), Phys. Lett. **B549** (2002) 290.

G. Abbiendi et al. (Opal), Phys. Lett. **B521** (2001) 181.

J. Abdallah et al. (Delphi), Phys. Lett. **B590** (2004) 21.

A. Heister et al. (Aleph), Phys. Lett. **B453** (2002) 173.

- Hadronic top decay (4 jets) or semileptonic top decay (2 jets & lepton)
- Very similar results among all LEP experiments, best limit on BR(t→Zq):13.7% (L3)

HERA searches:

A. Aktas et al. (H1), Eur. Phys. J. C33 (2004) 9.

S. Chekanov et al. (ZEUS), Phys. Lett. **B559** (2003) 153.

- Hadronic top decay (3 jets) or semileptonic top decay (lepton & jet)
- Most sensitive to tγq vertex, preference for u over c quarks (proton sea)

Best Limits 2006

The H1 result caused some excitement:

Abstract. [...] In the leptonic channel, 5 events are found while 1.31 ± 0.22 events are expected from the Standard Model background. In the hadronic channel, no excess above the expectation for Standard Model processes is found. [...]

DØ 2007: Single Top via FCNC

Study single Top production via FCNC:

- Artificial neural network to discriminate signal from background
- World's best limit on t-c-g and t-u-g couplings (κ/Λ)² → previous limits improved by order of magnitude

$$\left(\kappa_g^c/\Lambda\right)^2 < 0.023 \,\text{TeV}^{-2}$$
 (95% C.L.)
 $\left(\kappa_g^u/\Lambda\right)^2 < 0.0014 \,\text{TeV}^{-2}$ (95% C.L.)

[V. M. Abazov et al., hep-ex/0702005, submitted to PRL]

Outline of the Talk

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Tevatron Run II: 2001–2009 (2010?)

[Fermilab Visual Media Service]

- Proton-antiproton collider:
 √s = 1.96 TeV
- 36×36 bunches, collisions every 396 ns
- Record instantaneous peak luminosity:
 292 μb⁻¹ s⁻¹
 (1 μb⁻¹ s⁻¹ = 10³⁰ cm⁻² s⁻¹)
- Luminosity goal:
 5.5–6.5 fb⁻¹ of integrated luminosity by 2009, running in 2010 currently under discussion
- Two multi-purpose detectors: CDF and DØ

Tevatron Performance

- Tevatron continues to perform very well:
 - More than 3 fb⁻¹ delivered up to Summer 2007 shutdown
 - More than 2.5 fb⁻¹ recorded by CDF

Hadron Collider Kinematics

- Cylindrical coordinate system:
 - θ: polar angle w.r.t. to proton direction
 - φ: azimuthal angle
 - Pseudorapidity: $\eta = -\ln \tan(\theta/2)$
 - Transverse energy:

$$\vec{E_T} = \sum_{\text{cal towers}} E_i(\sin \theta_i, \phi_i)$$

• Missing transverse energy ("MET"):

$$\vec{E}_T = -\sum_{\text{jets}} \vec{E}_T - \sum_{\text{leptons}} \vec{p}_T$$

Outline of the Talk

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

The Discovery of the Top Quark

Brief history of top quark discovery:

- 1977: Y discovery bottom quark
- 1980s: Searches for "light" top (mass smaller than W boson mass) as isospin partner of bottom at PETRA, SppS, LEP, CDF Run 0
- 1992/3: Tevatron Run I starts, first indications for top quark production
- March 2, 1995: CDF and DØ announce top quark discovery

The Top Quark in the Standard Model

- The top is heavy: $m_t \approx 170 \text{ GeV}/c^2$ (40× m_b , approx. mass of gold atom)
- Mass close to scale of electroweak symmetry breaking (EWSB), top Yukawa coupling f ≈1:

$$\mathscr{L}_{\mathrm{Yuk},t} = f \frac{v}{\sqrt{2}} \, \bar{t}_L t_R \equiv m_t \, \bar{t}_L t_R$$

(vacuum expectation value of Higgs field: $v/\sqrt{2} \approx 178 \text{ GeV}$)

- → Important role in EWSB models
- Top is the only "free" quark: lifetime shorter than hadronization time

$$au = rac{1}{\Gamma} pprox rac{1}{1.5\,\mathrm{GeV}} < rac{1}{\Lambda_{\mathrm{QCD}}} pprox rac{1}{0.2\,\mathrm{GeV}}$$

- → No spectroscopy of bound states
- → Spin transferred to decay products

Top Pair Production at the Tevatron

Analyzing Top Quark Events

- Top decay in the Standard Model: t → Wb (BR ≈ 100%)
- tt̄ decay signatures characterized by W decays:
 - All-Hadronic (45% of all decays)
 - Lepton+Jets (30% of all decays)
 - Dilepton (5% of all decays)
- Main background process: production of W bosons in association with Jets
- tt̄ events contain two b quarks:
 b quark identification
 ("b-tagging") crucial

Top Pair Production Cross Section

 SecVtx b-tagging algorithm: based on significance of 2D impact parameter

- CDF's single most precise top cross section measurement: Lepton + Jets channel with SecVtx b-tags
- Results (CDF Public Note 8795)

Single B-Tag	σ_{tt} = 8.2 ± 0.5 (stat) ± 0.8 (syst) ± 0.5 (lum) pb
Double B-Tag	σ_{tt} = 8.8 ± 0.8 (stat) ± 1.2 (syst) ± 0.5 (lum) pb

CDF's Top Properties Program

- From top discovery in 1995 to precision physics in 2007:
 - Dataset: 1000s of top events
 - Mass & cross section very precisely measured
 - Evidence for single top production
- Broad program to study properties of the top quark: production, decay, quantum numbers, ...
- Measurements of top properties try to answer:

Is the top really the Standard Model top?

Outline of the Talk

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Top FCNC Search: Roadmap

- Basic question: how often do top quarks decay into Zq?
 → set limit on branching fraction BR(t → Zq)
- Selection of decay channels for tt → Zq Wb:
 - Z → charged leptons: very clean signature, lepton trigger
 - W → hadrons: large branching fractions, no neutrinos
 → event can by fully reconstructed
 - Final signature: Z + ≥4 jets
- Analysis Outline:
 - I. Baseline Event Selection
 - II. Initial Background Estimate
 - III. Optimization of Event Selection
 - IV. Systematic Uncertainties
 - V. Final Limit Calculation

Blind Analysis

- Event signature: Z → I⁺I⁻ + 4 jets
- Motivation for blind analysis: avoid biases by looking into the data too early
- Blinding & unblinding strategy:
 - Initial blinded region: Z + ≥ 4 jets
 - Later: add control region in Z + ≥ 4 jets from kinematic constraints
 - Optimization of event selection, prediction of backgrounds, and systematic uncertainties on data control regions and Monte Carlo (MC) simulation only
 - Very last step: "opening the box", i.e. look into signal region in data

Simulation of FCNC Signal

- Monte Carlo (MC) simulation of FCNC decay t → Zq with PYTHIA
 - t → Zq vertex unknown to PYTHIA
 - Decay generated flat in cos θ*
 (angle between top boost direction and lepton of same charge sign from Z decay, in Z rest frame)

Solution: reweight according to expectation from standard model Higgs mechanism:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos(\theta^*)} = f^0 \cdot \frac{3}{4} \left(1 - \cos(\theta^*)^2 \right) + f^- \cdot \frac{3}{8} \left(1 - \cos(\theta^*) \right)^2 + f^+ \cdot \frac{3}{8} \left(1 + \cos(\theta^*) \right)^2$$

with $f^0 = 0.65$ ("longitudinal), $f^- = 0.35$ ("left-handed"), $f^+ = 0$ ("right-handed")

- Main FCNC signal sample: one top decays t → Zc, other decays t → Wb
 - Additional sample required for decay t → Zu
 - Additional sample for "double FCNC" events, i.e. both tops decay via FCNC t → Zq

Search for FCNC: Ingredients

Search for FCNC: Ingredients

Search for FCNC: Ingredients

Search for FCNC: Ingredients

Search for FCNC: Ingredients

Z Boson Reconstruction

- Simple trigger: single electron or muon, transverse momentum >18 GeV/c
- Sharp Z resonance, good lepton momentum resolution \rightarrow cut on lepton pair invariant mass: 76 GeV/ $c^2 < M_{\parallel} < 106$ GeV/ c^2
- Enhancing the Z acceptance:
 - Tracking systems have better coverage than calorimeter and muon detectors: allow second lepton to be isolated track
 → doubles acceptance w.r.t. standard lepton selection
 - Electron tracks lose momentum via bremsstrahlung: correct track momentum with calorimeter energy
 → 3% more dielectron pairs

Adding Jets

- FCNC: four jet assignments
 - 1 b-jet from t → Wb decay
 - 2 jets from subsequent W decay
 - 1 jet from t → Zq decay
- For all 12 possible combinations of first four jets in the event:
 - 1. Combine jets #1 and #2 to W, calculate invariant mass $m_{W,rec}$
 - 2. Vary momenta of jets #1 and #2 within their resolutions to match PDG W mass ("fix W mass")
 - 3. Add jet #3 to fixed W, calculate invariant mass *m*_{t→Wb,rec}
 - 4. Vary momenta of leptons within their resolutions to match PDG Z mass ("fix Z mass")
 - 5. Add jet #4 to fixed Z, calculate invariant mass $m_{t \to Zq,rec}$

Pick combination with lowest

$$\chi^{2} = \left(\frac{m_{W,\text{rec}} - m_{W,\text{PDG}}}{\sigma_{W,\text{rec}}}\right)^{2} + \left(\frac{m_{t \to Wb,\text{rec}} - m_{t,\text{PDG}}}{\sigma_{t \to Wb}}\right)^{2} + \left(\frac{m_{t \to Zq,\text{rec}} - m_{t,\text{PDG}}}{\sigma_{t \to Zq}}\right)^{2}$$

 Widths reflect mass resolutions as measured in MC simulation:

$$\sigma_{\text{W,rec}} = 15 \text{ GeV}/c^2,$$
 $\sigma_{\text{t}\rightarrow\text{Wb,rec}} = 24 \text{ GeV}/c^2$
 $\sigma_{\text{t}\rightarrow\text{Zq,rec}} = 21 \text{ GeV}/c^2$

Expected Backgrounds

- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model tt̄ production
 → small background
 - Dibosons: WZ and ZZ diboson production → small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

Expected Backgrounds

- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model tt
 production
 → small background
 - Dibosons: WZ and ZZ diboson production → small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

Standard Model tt Production

- Small background: no real Z, need extra jets from gluon radiation and/or "fake lepton"
 - Dilepton channel
 (tt̄ → Wb Wb → Ivb Ivb):
 dilepton invariant mass can fall
 into Z mass window
 - Lepton+Jets channel
 (tt̄ → Wb Wb → lvb qq'b):
 misreconstruct one jet as a lepton
 ("fake"), invariant mass of lepton
 and fake lepton can fall into Z
 mass window
- Large fraction of heavy flavor jets:
 more important in b-tagged samples
- Estimated from MC simulation

Expected Backgrounds

- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model tt
 production
 → small background
 - Dibosons: WZ and ZZ diboson production → small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

Diboson Production: WZ, ZZ

- Small background (similar in size to standard model tt production)
 - Small cross section but real Z
 - Need extra jets from gluon radiation
- ZZ: Heavy flavor contribution from Z→bb̄ decay
- Estimated from MC simulation

Z+Jets Production

- MC tool for Z+Jets: ALPGEN
 - Modern MC generator for multiparticle final states
 - "MLM matching" prescription to remove overlap between jets from matrix element and partons showers
- Comparing ALPGEN with data:
 - Leading order generator: no absolute prediction for cross section
 - Underestimate of number of events with large jet multiplicities, large uncertainties
- Our strategy: only shapes of kinematic distributions from MC, normalization from control samples in data

Kinematic Constraints

Mass x²: combination of mass constraints – best discriminator

$$\chi^{2} = \left(\frac{m_{W,\text{rec}} - m_{W,\text{PDG}}}{\sigma_{W,\text{rec}}}\right)^{2} + \left(\frac{m_{t \to Wb,\text{rec}} - m_{t,\text{PDG}}}{\sigma_{t \to Wb}}\right)^{2} + \left(\frac{m_{t \to Zq,\text{rec}} - m_{t,\text{PDG}}}{\sigma_{t \to Zq}}\right)^{2}$$

Transverse mass: FCNC top decays are more central than Z+jets

$$M_T = \sqrt{\left(\sum E_T\right)^2 - \left(\sum \vec{p}_T\right)^2}$$

 Jet transverse energies: FCNC signal has four "hard" jets, background processes: jets have to come from gluon radiation

To B-Tag or not to B-Tag?

- Advantage of requiring b-tag:
 Better discrimination against main
 Z+jets background
 (heavy flavor backgrounds rather small: SM tt̄, Zbb̄ + jets)
- Disadvantage:
 Reduction of data sample size
- Solution: use both!
 - Split sample in tagged and anti-tagged
 - Optimize cuts individually for tagged and anti-tagged samples
 - Combine samples in limit calculation
- Main difficulty of this approach: event migration between samples
 - Systematics may be correlated or anticorrelated between samples
 - Taken into account in limit calculation

Optimization of Event Selection

- Question: best choice for cut values?
- Goal: derive limit on branching fraction of FCNC process t → Zq
- No prediction for amount of signal: "signal over background" et al. do not work
- Solution: optimize cuts for best expected limit (assuming no signal)

$$\sum_{n_{\text{obs}}} P(n_{\text{obs}}|n_{\text{back}}) \cdot \text{Lim}(n_{\text{obs}}|A, n_{\text{back}})$$

- P: Poisson probability
- L: any limit calculation method
- Our analysis: faster objective Bayesian limits for optimization, "better" Feldman-Cousins limits for final result (both including systematic uncertainties)
- Correlations among variables: multi-dimensional optimization

Final Event Selection Kinematic Variable Optimized Cut \in [76,106] GeV/ c^2 Z Mass Leading Jet E_T $> 40 \,\mathrm{GeV}$ Second Jet E_T $> 30 \,\mathrm{GeV}$ Third Jet E_T $> 20\,\mathrm{GeV}$ Fourth Jet E_T $> 15 \,\mathrm{GeV}$ Transverse Mass $> 200\,\mathrm{GeV}$ $\sqrt{\chi^2}$ < 1.6 (*b*-tagged) < 1.35 (anti-tagged)

Background: Putting it all Together

- Total background prediction from control region in data:
 130 ± 28 events
 - Tail of mass χ² distribution
 - Average of cuts at $\sqrt{\chi^2}$ = 3.0, 3.2
- Tagging rate: 15% ± 4%
 - Tail of mass χ²: 16% ± 7% (small sample → large uncertainties)
 - MC prediction of tagging rate: 11% (but: 30% too low for Z+≤ 3 Jets)
 - Template fit of MC tagging probabilities vs. number of jets: 14%

Source	Without b-tag	Loose SECVTX b-tag
Z+Jets	123.3 ± 28	17.6±6
Standard Model <i>tt</i>	2.4 ± 0.3	1.7 ± 0.2
Diboson (WZ, ZZ)	4.3 ± 0.2	0.7 ± 0.1
WW, W+Jets	< 0.1	negligible
Total Backgrounds:	130±28	20±6

Acceptance Algebra: Catch 22?

- Question: how to get from event counts to limit on BR(t→Zq)?
 - Circular dependency #1: Limit calculation requires knowledge of signal acceptance, but signal acceptance depends on limit
 - Circular dependency #2: Measure limit on fraction of tt production cross section, but cross section changes with changing FCNC contribution
- Solution: "running acceptance" functional form of above dependencies implemented in limit machinery
 - Signal acceptance dynamically adjusted as a function of BR(t→Zq)
 - Signal normalized to measured tt production cross section measurement
 - tt cross section re-interpreted as a function of BR(t→Zq) to allow for FCNC contribution

Acceptance Algebra: Details

Signal count: probability for one or both tops to decay via FCNC

$$\mathscr{P}(t\bar{t}\to ZcWb, ZcZc, \dots)$$

- Normalization to double-tagged tt cross section measurement:
 - Double-tagged: smallest overlap between acceptances
 - Luminosity uncertainties cancel, other uncertainties reduced

$$\mathcal{B}_{Z} \equiv \mathcal{B}(t \to Zc) = 1 - \mathcal{B}(t \to Wb)$$
 $\mathcal{A}_{WZ} \equiv \text{FCNC Acceptance}$
 $\mathcal{A}_{ZZ} \equiv \text{Double FCNC Acceptance}$
 $\mathcal{A}_{LJ_{WW}} \equiv \text{L+J Acceptance for SM } t\bar{t}$
 $\mathcal{A}_{LJ_{WZ}} \equiv \text{L+J Acceptance for FCNC}$

 $\mathcal{A}_{LJ_{ZZ}} \equiv \text{L+J Acceptance for Double FCNC}$

$$K_{ZZ/WZ} \equiv \mathscr{A}_{ZZ}/\mathscr{A}_{WZ}$$
 $\mathscr{R}_{WZ/WW} \equiv \mathscr{A}_{LJ_{WZ}}/\mathscr{A}_{LJ_{WW}}$
 $\mathscr{R}_{ZZ/WW} \equiv \mathscr{A}_{LJ_{ZZ}}/\mathscr{A}_{LJ_{WW}}$

Acceptance Master Formula:

$$N_{\text{signal}} = [(\mathscr{P}(t\bar{t} \to WbZc) \cdot \mathscr{A}_{WZ}) + (\mathscr{P}(t\bar{t} \to ZcZc) \cdot \mathscr{A}_{ZZ})] \cdot \sigma_{t\bar{t}} \cdot \int \mathscr{L} dt$$

...1/2 page of algebra...

$$= \mathscr{B}_Z \cdot (N_{LJ} - B_{LJ}) \cdot rac{\mathscr{A}_{WZ}}{\mathscr{A}_{LJ_{WW}}}$$
Acc.
L+J yield Ratio

$$= \mathscr{B}_{Z} \cdot (N_{LJ} - B_{LJ}) \cdot \frac{\mathscr{A}_{WZ}}{\mathscr{A}_{LJ_{WW}}} \cdot \frac{\left(2 \cdot (1 - \mathscr{B}_{Z}) + K_{ZZ/WZ} \cdot \mathscr{B}_{Z}\right)}{(1 - \mathscr{B}_{Z})^{2} + 2\mathscr{B}_{Z} \cdot (1 - \mathscr{B}_{Z}) \cdot \mathscr{R}_{WZ/WW} + \mathscr{B}_{Z}^{2} \cdot \mathscr{R}_{ZZ/WW}}$$

"Running" Acceptance Correction

Acceptance Algebra: Details

Signal count: probability for one or both tops to decay via FCNC

$$\mathscr{P}(t\bar{t}\to ZcWb, ZcZc, \dots)$$

- Normalization to double-tagged tt cross section measurement:
 - Double-tagged: smallest overlap between acceptances
 - Luminosity uncertainties cancel, other uncertainties reduced

$$\mathscr{B}_{Z} \equiv \mathscr{B}(t \to Zc) = 1 - \mathscr{B}(t \to Wb)$$
 $\mathscr{A}_{WZ} \equiv \text{FCNC Acceptance}$
 $\mathscr{A}_{ZZ} \equiv \text{Double FCNC Acceptance}$
 $\mathscr{A}_{LJ_{WW}} \equiv \text{L+J Acceptance for SM } t\bar{t}$
 $\mathscr{A}_{LJ_{WZ}} \equiv \text{L+J Acceptance for FCNC}$
 $\mathscr{A}_{LJ_{ZZ}} \equiv \text{L+J Acceptance for Double FCNC}$
 $\mathscr{A}_{ZZ/WZ} \equiv \mathscr{A}_{ZZ}/\mathscr{A}_{WZ}$

Acceptance Master Formula:

$$N_{\text{signal}} = [(\mathscr{P}(t\bar{t} \to WbZc) \cdot \mathscr{A}_{WZ}) + (\mathscr{P}(t\bar{t} \to ZcZc) \cdot \mathscr{A}_{ZZ})] \cdot \sigma_{t\bar{t}} \cdot \int \mathscr{L} dt$$

...1/2 page of algebra...

$$= \frac{\mathscr{B}_{Z} \cdot (N_{LJ} - B_{LJ})}{\mathscr{A}_{LJ_{WW}}} \cdot \frac{\mathscr{A}_{WZ}}{\mathscr{A}_{LJ_{WW}}}$$
Acc.
L+J yield Ratio

$$= \mathcal{B}_{\mathbf{Z}} \cdot (N_{LJ} - B_{LJ}) \cdot \frac{\mathcal{A}_{\mathbf{WZ}}}{\mathcal{A}_{LJ_{\mathbf{WW}}}} \cdot \frac{\left(2 \cdot (1 - \mathcal{B}_{\mathbf{Z}}) + K_{ZZ/WZ} \cdot \mathcal{B}_{\mathbf{Z}}\right)}{(1 - \mathcal{B}_{\mathbf{Z}})^2 + 2\mathcal{B}_{\mathbf{Z}} \cdot (1 - \mathcal{B}_{\mathbf{Z}}) \cdot \mathcal{R}_{\mathbf{WZ/WW}} + \mathcal{B}_{\mathbf{Z}}^2 \cdot \mathcal{R}_{\mathbf{ZZ/WW}}}$$

 $\mathscr{R}_{WZ/WW} \equiv \mathscr{A}_{LJ_{WZ}}/\mathscr{A}_{LJ_{WW}}$

 $\mathscr{R}_{ZZ/WW} \equiv \mathscr{A}_{LJ_{ZZ}}/\mathscr{A}_{LJ_{WW}}$

"Running" Acceptance Correction

Signal Systematics

- Signal systematic evaluated for acceptance ratio A_{WZ}/A_{LJ}
- Distinguish uncertainties: correlated or anti-correlated between selections
 - Correlated: shift anti-tagged & tagged selection into same direction (e.g. lepton SF)
 - Anti-correlated: shift anti-tagged & tagged into opposite directions (e.g. b-tagging)

Systematic Uncertainty	Base Selection (%)	Anti-Tagged (%)	Loose Tag (%)
Lepton Scale Factor	0.5	0.5	0.5
Trigger Efficiency	0.2	0.2	0.2
Jet Energy Scale	3.1	2.6	1.9
ISR/FSR	1.3	2.6	6.5
Helicity Re-Weighting	3.5	3.4	3.2
Parton Distribution Functions	0.9	0.9	0.9
Total Correlated	5.0	5.1	7.5
B-Tagging Scale Factor	10.2	16.3	5.5
Mistag $\alpha\beta$ Correction	0.6	1.0	0.4
$\mathscr{B}(t \to Zc)$ versus $\mathscr{B}(t \to Zu)$	0.0	4.0	4.0
Total Anti-Correlated	10.2	16.8	6.8

Signal Systematics

- Signal systematic evaluated for acceptance ratio A_{WZ}/A_{LJ}
- Distinguish uncertainties: correlated or anti-correlated between selections
 - Correlated: shift anti-tagged & tagged selection into same direction (e.g. lepton SF)
 - Anti-correlated: shift anti-tagged & tagged into opposite directions (e.g. b-tagging)

Systematic Uncertainty	Base Selection (%)	Anti-Tagged (%)	Loose Tag (%)
Lepton Scale Factor	0.5	0.5	0.5
Trigger Efficiency	0.2	0.2	0.2
Jet Energy Scale	3.1	2.6	1.9
ISR/FSR	1.3	2.6	6.5
Helicity Re-Weighting	3.5	3.4	3.2
Parton Distribution Functions	0.9	0.9	0.9
Total Correlated	5.0	5.1	7.5
B-Tagging Scale Factor	10.2	16.3	5.5
Mistag $\alpha\beta$ Correction	0.6	1.0	0.4
$\mathscr{B}(t \to Zc)$ versus $\mathscr{B}(t \to Zu)$	0.0	4.0	4.0
Total Anti-Correlated	10.2	16.8	6.8

Background Systematics

- Background systematics dominated by yield uncertainties
 - Total background yield:
 130 ± 28 (21.5% relative uncertainty)
 - Tagging rate: 15% ± 4% (relative uncertainty: 26.7% tagged, 4.7% anti-tagged)
- Remaining uncertainties: efficiency of x² cut
 - Ratio of events with $\sqrt{\chi^2}$ < 1.6 (signal region) vs. $\sqrt{\chi^2}$ > 3.0 (control region)
 - Dominated by choice of MC generator and jet energy scale

Background Systematics

- Background systematics dominated by yield uncertainties
 - Total background yield:
 130 ± 28 (21.5% relative uncertainty)
 - Tagging rate: 15% ± 4% (relative uncertainty: 26.7% tagged, 4.7% anti-tagged)
- Remaining uncertainties: efficiency of χ² cut
 - Ratio of events with $\sqrt{\chi^2}$ < 1.6 (signal region) vs. $\sqrt{\chi^2}$ > 3.0 (control region)
 - Dominated by choice of MC generator and jet energy scale

The World's Best Limit on BR(t → Zq)

- Opening the box with 1.12 fb⁻¹
 - Event yield consistent with background only
 - Fluctuated about 1σ high: slightly unlucky
- Result: The World's Best Limit!

$$\mathscr{B}(t \to Zq) < 10.6\%$$
 @ 95% C.L.

- Expected limit: 7.1% ± 3.0%
- 25% better than L3 (13.7%)
- 3x better than CDF Run I (33%)
- Above results assumes $m_t = 175$ GeV/ c^2 , limit at $m_t = 170$ GeV/ c^2 : BR(t \rightarrow Zq) < 11.2% @ 95% C.L.
- Update with 2 fb⁻¹ and improved method in the works

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20 ± 6
Anti-Tagged Selection	12	7.7 ± 1.8
Tagged Selection	4	3.2 ± 1.1

Mass χ^2 (95% C.L. Upper Limit)

Top FCNC Searches at the LHC

- Large Hadron Collider (LHC):
 - Proton-proton collider at 14 TeV center-of-mass energy (CERN)
 - Two multi-purpuse experiments: ATLAS and CMS
 - First data expected in 2008 (2009?)
- Recent ATLAS study on sensitivity for top FCNC
 - Improvement of current limits on BR (t→Zq) by 2–3 orders of magnitude
 - Entering interesting regime of 10⁻⁴ to 10⁻⁵: exclusion of first theoretical models
- Caveat: background model
 - Existing MC tools not tuned to new energy regime
 - Tevatron experience: obtain backgrounds from data

Summary and Conclusions

- Top flavor changing neutral current decays
 - Extremely rare in the standard model
 - Enhanced in theories beyond the standard model → any signal would indicate new physics
- First Tevatron Run II search for FCNC
 t → Zq in top quark decays
 - Event signature: Z + ≥ 4 jets
 - Main background process: standard model
 Z + jets production
 - Mass χ^2 to separate signal from background
- No evidence for top FCNC found
 - World's best limit: BR(t→Zq) < 10.6% at 95% C.L.
 - Working on improvements, stay tuned!