

Top and Beyond From the Tevatron to the LHC

Gemeinsames Teilchen- und Astroteilchenphysikalisches Seminar der Universitäten Heidelberg, Tübingen und des KIT Karlsruhe, December 20, 2011

The Standard Model of Particle Physics

- Very economic model of nature at the fundamental level
 - 12 matter + 12 antimatter particles (fermions)
 - 3 forces (carriers: bosons)
- Experimental confirmation to incredible precision in the last 30+ years, very little (persistent) tension up to now
- Last missing ingredient: the Higgs boson

[Fermilab Media Service]

A Brief History of the Top Quark

- 1973: CP violation in the standard model requires three quark generations
- Image: Second structure
 <
- I 980ies: search for "light" top quarks in the decay W⁺ → tb, electroweak precision data indicate "heavy" top
- 1992: first indication for "heavy" top quarks at the Tevatron
- 1995: Tevatron experiments CDF and DØ publish discovery of the top quark with a mass of about 175 GeV

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

VIOLENT COLLISION between a proton and an antiproton (*center*) creates a top quark (*red*) and an antitop (*blue*). These decay to other particles, typically producing a number of jets and possibly an electron or positron.

[Scientific American, September 1997]

Top – The Special One

- Large mass: mt ≈ 173 GeV (40×mb, approx. mass of a gold atom)
- Mass close to scale of electroweak symmetry breaking (EWSB) → Yukawa coupling f ≈1:

$$\mathcal{L}_{Y,t} = f \, \frac{v}{\sqrt{2}} \, \overline{t}_L t_R \equiv m_t \, \overline{t}_L t_R$$

- \rightarrow important role in models that explain EWSB
- Top is the only <u>"free</u> quark: life time much smaller than hadronization time

$$au = rac{1}{\Gamma} pprox (1.5\,{ extrm{GeV}})^{-1} < rac{1}{\Lambda_{ extrm{QCD}}} pprox (0.2\,{ extrm{GeV}})^{-1}$$

 \rightarrow No bound states \rightarrow Spin transfered to decay products

Reminder: Hadron Collider Kinematics

$$\hat{E}_{\rm CMS}^2 = x_1 x_2 E_{\rm CMS}^2$$

- Hadron collider: collisions of "broadband" parton beams
 - Longitudinal momentum fractions x_i unknown → partonic center of mass frame unknown
 - Consequence: use only Lorentz invariant transverse quantities, e.g. transverse momentum

$$p_T = \sqrt{p_x^2 + p_y^2} = p \sin \theta$$

- Indirect reconstruction of "invisible particles" (e. g. neutrinos): missing transverse energy (MET) from transverse momentum balance
- Instead of polar angle: use pseudorapidity

 $\eta = -\ln \tan(\theta/2)$

Analyzing Top Quark Events

- Top decay in the standard model: B(t → Wb) ≈ 100%
 - Challenging signature: multiple leptons & jets, MET
 - tt decay signatures characterized by W decays:
 - All-Hadronic: 45% of all decays, large QCD background
 - Lepton+Jets: 30% of all decays, moderate backgrounds
 - Dilepton: 5% of all decays, very clean, but small branching fraction

Your Program for Tonight

8 12/20/2011 Top and Beyond – From the Tevatron to the LHC

From the Tevatron to the LHC

Tevatron Run II: 2001–2011

LHC _ the Large Hadr LHC Accelerator:

proton-proton and lead-lead collisions

ALICE Experiment: heavy ion physics

CMS Experiment: multi-purpose experiment

CERN accelerator complex, about 100 m under ground LHC circumference: ~27 km Are Ceneys LHCb Experiment: CP violation and B physics

ATLAS Experiment: multi-purpose experiment

h Husemann hysik (IEKP)

From the Tevatron to the LHC

CMS – Compact Muon Solenoid

CMS Photo Gallery

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

Luminosities: Tevatron vs. LHC

Tevatron Run II 2001–2011

- Record instantaneous lumi: 4.4×10³² cm⁻² s⁻¹
- About 10 fb⁻¹ (= 70,000 top pairs) per experiment
- Long commissioning phase, then smooth sailing

LHC 2010/2011: 7 TeV

- Record instantaneous lumi: 3.5×10³³ cm⁻² s⁻¹
- About 5 fb⁻¹ (= 800,000 top pairs) per experiment
 - Exceeding expectations

Top Quark Pair Production

Top Pair Production: From Tevatron to the LHC

Precision Top Cross Section Measurement

- Top pair production cross section at current LHC energies:
 - At the LHC: top is becoming the new "standard candle" of particle physics – abundant and precisely known
 - Theory: "approximate" NNLO calculations → uncertainties below 10%

Example: ATLAS measurement 2011

- Decay channel: muon/electron + jets
- Extract cross section from event kinematics
- Multivariate discriminant: projective likelihood estimator build from few wellmodeled kinematic variables
- Profile likelihood template fit: constrain major systematic uncertainties in situ

Top Cross Section: Input Variables

Top Cross Section: Result

Final fit to discriminant in six regions (muon/electron+ 3,4,≥5 jets)

What's Next in Top Physics?

Top Physics Makes Prime Time!

Many Ways to go Beyond Top

Searches at Tevatron & LHC include:

- Heavy Z' or KK gluon decaying to tt
- Heavy tops T decaying to $t\bar{t}+X$
- Anomalous missing transverse momentum in top events
- Like-sign tops
- Charged Higgs in $t \rightarrow H^+b$
- Fourth generation t' \rightarrow bW

Boosted Tops

- At LHC energies: top may have significant Lorentz boost
 - Decay products are collimated
 - Hadronic top decays $t \rightarrow Wb \rightarrow qq'b$ can have three overlapping jets
- New algorithms available to deal with such "fat jets"
 - Reconstruct jets with sequential recombination algorithms (e.g. k_T)

Events / 5 GeV/c²

- **Resolve** jet-substructure \rightarrow efficient top reconstruction and tagging at large boost
- Successfully applied to e.g.
 - Search for tt resonances
 - Higgs search: $H \rightarrow b\bar{b}$

Heavy Narrow Resonances Decaying to Top

3000

Heavy resonance models

- Generic model at Tevatron and LHC: leptophobic Z' → narrow resonance in tt̄ invariant mass spectrum
- Randall-Sundrum model: Kaluza-Klein gluons decaying to $t\bar{t} \rightarrow broad resonance$

- CMS search (Summer 2011)
 - Reconstruction of boosted tops in µ+jets: 8–12% resolution in M_{tt} above 1 TeV
 - Narrow Z' with masses above 1.35 TeV: sub-picobarn limits on production cross section for pp → Z' → tt̄

Asymmetries in Top Production

 Tevatron: top preferably produced in direction of the incoming p or p̄?
 Physics: interference between amplitudes even/odd in t↔t̄ → NLO effect [Kühn, Rodrigo, PRL 81 (1998) 49]

N.B.: this has nothing to do with C violation, everything is CP conserving QCD

Tevatron:

p \overline{p} is a CP eigenstate $N_t(y) = N_{\overline{t}}(-y)$

Charge asymmetry \rightarrow forward-backward asymmetry, e.g. expressed as "pair asymmetry": rapidity difference $q\Delta y = y_t - y_{\bar{t}}$

$$A^{t\bar{t}} = \frac{N((y_t - y_{\bar{t}}) > 0) - N((y_t - y_{\bar{t}}) < 0)}{N((y_t - y_{\bar{t}}) > 0) + N((y_t - y_{\bar{t}}) < 0)}$$

Theory expectations at NLO: 7.3% (with about 15% relative uncertainty)

Asymmetries in Top Production

Surprising Tevatron results:

Enter the LHC

Top charge asymmetry at the LHC

- **pp** is parity eigenstate \rightarrow no forward-backward asymmetry
- Bose symmetry: dominant process $gg \rightarrow t\bar{t}$ is symmetric
- But: there is still a small (differential) charge asymmetry at NLO

- LHC analyses in a nutshell
 - CMS observables: $\Delta |\eta| = |\eta_t| |\eta_{\bar{t}}|$ and $\Delta y^2 = y_t^2 y_{\bar{t}}^2$
 - **ATLAS observables:** $\Delta |y| = |y_t| |y_{\bar{t}}|$
 - Analysis strategy: reconstruct "raw" observables

 → unfold detector effects (ATLAS: iterative Bayesian, CMS: regularization)

Karlsruhe Institute of Technology

ATLAS

[https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-106/]

CMS

CMS Results: $A_{C^{\eta}} = -1.6 \pm 3.0(\text{stat})^{+1.0}_{-1.9}(\text{syst}) \%$ $A_{C^{y}} = -1.3 \pm 2.6(\text{stat})^{+2.6}_{-2.1}(\text{syst}) \%$ no significant tt mass dependence

[CMS-PAS-TOP-11-014]

... which leaves our theory colleagues puzzled

31 12/20/2011 Top and Beyond – From the Tevatron to the LHC

The Upcoming Run: 2012 Energy

- Running conditions for 2012 currently under discussion
 - Center of mass energy: 7 or 8 TeV (or starting with 7 TeV and then moving up to 8 TeV)
 - Decision during Chamonix retreat, early 2012

Running at 8 TeV

- Machine physicists: magnet quenching risk manageable (remember the 2008 incident!)
- Gains in almost all channels, e.g. top cross section about 1.4 times larger
- Higher reach for searches for new physics

Factorization production cross section = parton lumi ⊗ partonic cross section

CTEQ6L1: Parton Luminosity Ratios

Longer Term Planning

Long shutdown 2 (2018):

LHC: preparations for high-2018 2019 2020 luminosity running ATLAS: replacement of full LS2 ine: Collimation & prepare for pixel detector (?) vities & RF cryo system S: new pixel detect. - detect. CMS: replacement of full timate luminosity. Inner vertex system pixel detector 2016/2017 New Pixel. New HCAL odetectors. Completion of muons upgrade LHCb - full trigger upgrade, new

vertex detector etc.

[Paul Collier, LHCC, Septembe

Injectors

CMS Pixel Detector Replacement

Current CMS Barrel Pixel Detector

- Motivation: keep equal or better performance at very high luminosities
 - Much larger number of particles per bunch crossing
 - → more readout channels
 - Current detector: aging and radiation damage → replace, add redundancy
- New CMS pixel detector:
 - **3** layers \rightarrow 4 layers,
 - To be installed in winter shutdown 2016/2017 → (almost) plug & play
 - Better resolution for impact parameters of charged particle tracks

 → improved B-tagging

The Advent of the Higgs?

The Top, the W, and the Higgs

Precision Top Mass Measurements

- One of the most important Tevatron legacies
- Two key ideas for ultimate precision
 - Squeeze the most out of each event: matrix element method → likelihood built from matrix element for tt production and decay
 - Dominant uncertainty: jet energy scale → constrain by measuring the W boson mass in situ (t → Wb, W → 2 jets)
- Summer 2011 combination (CDF+DØ, <u>arXiv:1107.5255</u>)

 $m_t = 173.2 \pm 0.6(\text{stat}) \pm 0.8(\text{syst}) \text{ GeV}$

Matrix Element Likelihood

 $[\]rightarrow$ 0.9 GeV (=0.5%) uncertainty!

Summer 2011 LHC Higgs Combination

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-157/

Latest News from the Higgs

Results of Higgs searches using the full 2011 dataset (12/13/2011)

Sensitivity to exclude Higgs boson almost in full mass range 115–600 GeV
 Observed limits somewhat weaker, e.g. CMS: 127–600 GeV

Latest News from the Higgs

Summary and Conclusions

- Tevatron: 20 very successful years for top physics coming to an end
 - Established the field: ideas, measurement techniques, ...
 - Important legacy measurements, e.g. top mass, FB asymmetry
- LHC physics program in full swing and top is a key ingredient
 - Precision measurements, searches for new physics beyond top, calibrations with tops
 - Many new ideas to be exploited
- LHC long term perspective
 - 13–14 TeV CM energy from 2014
 - Two-phase upgrade for high luminosity