Fall School of the IRTG "Development and Application of Intelligent Detectors" Heidelberg, November 1–5, 2010

Introduction to Silicon Detectors and Radiation Damage

Ulrich Husemann Deutsches Elektronen-Synchrotron DESY

Introduction

- How and where are silicon detectors employed at hadron colliders?
- Which detector components suffer from radiation damage?
- Part I: Radiation Damage in Silicon Sensors (UH)
 - What are typical sensor defects caused by radiation?
 - Which operational parameters are affected?
 - How can radiation damage be measured in the lab and how can it be modeled?
- Part II: Radiation Damage in Silicon Readout Electronics (Ketil Røed)
 - What is radiation environment responsible for inducing single event upsets (SEUs) in FPGAs?
 - How do SEUs affect SRAM memory cells and FPGAs?
 - How can SEU failures be tested, predicted, and reduced?

Introduction

Hadron Collider Experiments

- Silicon detectors employed in many particle physics experiments
 - Fixed target
 - Hadron colliders
 - Lepton and ep colliders,
 - ... and for various purposes
 - Charged particle tracking & vertexing
 - Calorimetry
- This lecture: restricted to siliconbased tracking and vertexing detectors at hadron colliders, e.g.
 - Spp̄S: pp̄ at √s = 630 GeV
 - Tevatron: $p\overline{p}$ at $\sqrt{s} = 1.8-1.96$ TeV
 - LHC: pp at √s = 7–14 TeV

Detector Example: ATLAS

5

- Physics goals: find (something like) the Higgs and/or New Physics
 - Production cross sections expected to be small (fb)
 - Need high instantaneous luminosity (now: 2×10³² cm⁻² s⁻¹, design 10³⁴ cm⁻² s⁻¹)
- Tracking detector requirements are a challenge
 - High bunch crossing rate (40 MHz) \rightarrow fast readout electronicss
 - Large flux of charged and neutral particles per collision
 → highly granular detectors to keep channel occupancies below 1–2%
 - Many physics signature (e.g. tagging of *b*-quark jets) require excellent vertexing \rightarrow transverse impact parameter resolution better than 15 µm
 - Particle production in hadronic interactions: lots of hadrons produced (pions, kaons, protons, neutrons, ...) \rightarrow radiation hard detectors and electronics (>100 kGy/year)
- Tracking detector technology of choice at the LHC
 - Small radial distance from beam pipe (<20 cm): silicon pixel detectors</p>
 - Larger radial distance: silicon microstrip detectors

The ATLAS Inner Detector

Slice of ATLAS Inner Detector Barrel

[2008 JINST 3 S08003]

7

Transition Radiation Tracker (TRT)

- 350,000 straw drift tubes
- Transition radiation for e/π separation
- Semiconductor Tracker (SCT)
 - Strip pitch: 80 μm
 - 6.3 million readout channels
- Silicon Pixel Detector
 - Pixel size: 400×50 μm²
 - 80 million readout channel
 - Innermost layer: 50.5 mm from beam

ATLAS Pixel Module

- Typical hybrid pixel module built of
 - Readout "flex" hybrid
 - Sensor: 46k pixels
 - 16 front-end (FE) chips
- Lots of electrical connections
 - FE chips bump-bonded to sensor, wire-bonded to flex
 - In: chip and sensor power (low and high voltage), chip commands, trigger

- Out: digitized data (later transformed into optical)
- Cooling system (not shown): remove heat dissipated by FE chips

ATLAS Expected Radiation Field

- Most forms of radiation damage characterized by ionizing radiation dose rate (in gray/year)
- More relevant for silicon detectors: fluence Φ (in cm⁻²)

 $\Phi = \int \phi(E) \, \mathrm{d}E$

with $\phi(E)$ particle energy spectrum (normalized to 1 MeV neutrons)

(m) suite					
Gy/year 1 →	Tile calorimeter	Tile calorimete	r	MDT	
$10 \longrightarrow 2^{2}$ $100 \longrightarrow 100$	LAr barrel calorimeter	LAr end calorime	-cap ter	CSC	
$1000 \longrightarrow$ $10000 \longrightarrow$		P C			

		Particle rates (kHz/cm ²)					Fneq	Ionisation	
Region	<i>R</i> (cm)	γ	Protons	Neutrons	π^{\pm}	μ^{\pm}	e ⁻	$(\times 10^{+12} \text{ cm}^{-2})$	dose (Gy/y)
		> 30 keV	> 10 MeV	> 100 keV	> 10 MeV	> 10 MeV	> 0.5 MeV		
Pixel layer 0	5.05	45800	2030	4140	34100	300	8140	270	158000
Pixel layer 2	12.25	9150	280	1240	4120	190	1730	46	25400
SCT barrel layer 1	29.9	4400	80	690	990	130	690	16	7590
SCT barrel layer 4	51.4	3910	36	490	370	67	320	9	2960
SCT end-cap disk 9	43.9	7580	73	840	550	110	470	14	4510
TRT outer radius	108.0	2430	10	380	61	7	53	5	680

ATLAS Total Ionizing Dose Rate

z (m)

Compare ISS:

< 0.1 Gy/y

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Introduction (Part I)

- Radiation influences all detector components in experimental hall
 - Detector modules: sensors, readout chips, control chips
 - Parts of readout chain (electrical & optical data transmission)
 - Parts of infrastructure in experimental hall: cooling system, power supplies/ converters
- In general: damage depends on composition of radiation field
 - Charged leptons and hadrons: large penetration, secondary interactions in material
 - Photons: photo-effect, Compton effect, pair production
 - Neutrons: hard to shield, low-energy neutrons wander through hall "out of time"
 - Composition of radiation field changes with distance from collision point, e.g. damage to ATLAS pixel detector dominated by charged hadrons (>85%), but 50% of SCT damage caused by neutrons
- This pair of introductory lectures;
 - Part I: Radiation damage in silicon sensors
 - Part II: Radiation damage in electronics, especially FPGAs

Part I: Radiation Damage in Silicon Sensors

Doped Semiconductors

- Band model: valence and conduction bands
- Band gap in silicon: 1.12 eV

Conduction Band

Valence Band

Ε

- Fermi level (at 0 K) inside band gap, conductivity through thermal excitations
- Properties can be changed by doping
 - Additional energy levels in band gap
 - Donors: creation of additional electrons
 - Acceptors: creation of additional holes

Ε

 E_F

hole ○ ←

electron • -

Semiconductor Diodes

 Diode = interface of pdoped and n-doped semiconductors:

DES

- Electrons and holes recombine → depletion zone
- Reverse bias voltage applied → depletion zone extended

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Introduction (Part I)

- Example: hybrid pixel detectors
 - Detector = semiconductor diode with pn junction in reverse bias \rightarrow depletion zone
 - Charged particles ionize detector material \rightarrow electron/hole pairs induce signal

Silicon Production Mechanisms

Czochralski (Cz) silicon:

- Mono-crystal pulled out of silicon melt
- Cheap (standard for microelectronics) but low purity (e.g. high oxygen concentration)

Detector Grade Silicon

Requirements for particle detectors:

- Very high resistivity: > 1 kΩcm → allows full depletion of 300 µm thick sensor with 300 V
- High purity: low noise
- Crystal orientations: <111><100>

Refinements of production methods:

- MCz: magnetic field controls convection in melt → more homogeneous than Cz, lower oxygen concentration
- DOFZ: diffusion oxygenated FZ silicon

 oxygen-enriched: believed to be beneficial
 for radiation hardness
- Epitaxial (EPI) silicon: silicon in vapor phase (e.g. SiCl₄) deposited on substrate

Silicon Ingots and Wafers

Radiation & Performance Parameters

- Single hit resolution dominated by strip pitch or pixel size (plus improvements from charge sharing) → usually not affected by radiation
- Signal-to-noise ratio (S/N): various radiation effects
 - Large values desirable: S/N > 15–20
 - Rule of thumb: problems for pattern recognition for S/N < 6
 → many wrong track seeds formed from combinations of signal and noise hits

Charge Collection Efficiency

18

- Charge collection efficiency (CCE)
 - Ionization required to create one electron/hole pair: 3.6 eV
 - Energy loss via ionization in silicon: dE/dx of a MIP 3.88 MeV/cm (mean)
 - Typical signal in 300 µm thick silicon bulk (using most probable energy loss = 0.7×mean) 22500 electrons = 3.6 fC
 - Radiation damage mechanism: trapping of parts of the electrons in sensor defects (details later) \rightarrow smaller signal

Leakage Current

- Leakage current: current flowing through sensor in reverse bias ("bulk generation current")
 - Increase of *I*_{leak} proportional to fluence (independent of exact silicon properties!)

$$\Delta I_{\text{leak}} = \alpha \Phi = \alpha \int \phi(E) \, \mathrm{d}E$$

 Rule of thump: leakage current doubles for ΔT ≈ 7 K

$$\frac{I_2}{I_1} = \left(\frac{T_2}{T_1}\right)^2 \exp\left[\frac{E_{\text{gap}}}{2k_B}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right]$$

(after 80 minutes at 60°C)

- **Problems** for detector operation:
 - Additional heat load on cooling system via resistive heating
 - Vicious circle: higher temperature causes even higher leakage currents
 → danger of thermal runaway = uncontrolled temperature rise
 - Shot noise caused by leakage current: proportional to $\sqrt{I_{\text{leak}}} \rightarrow$ deteriorates S/N

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Introduction (Part I)

Radiation and Bias Voltage

Depletion voltage V_{dep}: bias voltage necessary to fully deplete sensor bulk

- Maximum signal when full sensor bulk depleted (in practice usually over-depletion, i.e. bias voltage V_{bias} > V_{dep})
- Radiation damage changes effective doping concentration N_{eff} , typically from effective n-type to p-type: $V_{\text{dep}} \sim |N_{\text{eff}}| d^2 \rightarrow V_{\text{bias}}$ must be adjusted
- Maximum sensor bias voltage: discharges on surface (or even breakthrough)
 depends on sensor design
- Technical limitations: maximum voltage from power supplies, on power lines, connectors, $\dots \rightarrow$ in practice 500–1000 V

[UH, Proc. IEEE

NSS 2008]

8000

HEP Experiment (CDF)

Ladder Breakdown

Power Supply Limit

6000

4000

Microscopic Picture

- Primary knock-on atom (PKA)
 - Basic process: displacement of Si atoms in lattice
 - Threshold for displacement damage: minimum recoil energy
- Classes of damage (depending on recoil energy)
 - Isolated point defects

 → minimum recoil energy
 E_R > 15–25 eV
 - Defect clusters = areas with large number defects $\rightarrow E_R > 15$ keV
- Defects are dynamic:
 - Movement in crystal
 - Recombination with other defects
 - Annealing with high temperature

[V.A.J. van Lint et al., *Mechanisms of Radiation Effects in Electronic Materials*, Wiley 1980]

Displacement Damage Function

23

- Energy loss via ionization in silicon bulk is fully reversible (NB: damage can be significant for surface, e.g. charge accumulation at interface to oxide layer)
- Bulk damage: displacement of Si atoms by non-ionizing energy loss (NIEL)
- Energy loss usually expressed as displacement damage function D(E):

$$\frac{dE}{dx}(E)\Big|_{\text{NIEL}} = \frac{N_A}{A}D(E) \quad \text{with } D(E) = \sum_i \sigma_i(E) \int_{E_0}^{E_R^{\text{max}}} P(E, E_R) \, dE_R$$

 \rightarrow proportional to sum of cross sections σ_i for all reactions *i* times probability-weighted integral over all possible recoil energies E_R

- Differences between particle types, especially at low energies
 - Neutrons: elastic scattering with small cross section but large momentum transfer
 - Protons: Coulomb scattering with large cross section → likely to get many small momentum transfers → more point defects than in neutrons
 - Photons: point defects, usually no clusters

Displacement Damage Function

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Introduction (Part I)

24

DES

NIEL Hypothesis

- NIEL hypothesis: all damage parameters scale with NIEL

 approximation, does not hold for all particles and all energies
- Damage caused by different particles types *j* with given energy spectrum $\phi(E)$ can be expressed by single hardness factor κ_j

 $\kappa_j = \frac{\int \phi_j(E) D(E) dE}{D_n(1 \text{ MeV}) \int \phi_j(E) dE}$

 Conventional normalization to displacement damage of 1 MeV neutrons:

 $D_n(1 \text{ MeV}) = 95 \text{ MeV mb} = 2.04 \text{ keV cm}^2/\text{g}$

 Radiation exposure expressed by equivalent fluence Φ_{eq}:

$$\Phi_{\text{eq},j} = \kappa_j \Phi = \kappa_j \int \phi_j(E) \, \mathrm{d}E$$

Radiation	Average Energy	Hardness Factor		
Reactor Neutrons	2.1 MeV	1.06		
Protons (Cyclotron)	21.1 MeV 2.72			
Electrons	1.8 MeV	1.07×10 ⁻²		
Photons (⁶⁰ Co)	1.25 MeV	2×10 ⁻⁶		

[R. Wunstorf, PhD Thesis, U Hamburg (1992)]

Fluence Order of Magnitude Estimate

Experiment	Luminosity/ Radius	Equiv. Fluence
Tevatron (CDF)	10 fb ^{–1} / 3 cm	10 ¹⁴ cm ⁻²
LHC (ATLAS)	10 fb ⁻¹ / 3 cm	10 ¹⁵ cm ⁻²
LHC-HL (ATLAS)	10 fb ⁻¹ / 3 cm	10 ¹⁶ cm ⁻²

[M. Moll, ATLAS/CMS Common Electronics Workshop, CERN, March 2007]

Microscopic Picture: Point Defects

Many classes of point defects

- Interstitials: Si (or non-Si) atoms between lattice positions ("I", "B_I")
- Substitution of lattice atoms with non-Si, e.g. carbon (" C_S ")
- Vacancies in lattice ("V"), also divacancies ("V₂")
- Combinations of the above, e.g. Frenkel defects, vacancy+oxygen ("V–O")
- Interstitials and vacancies: mobile at room temperature
 - Annealing via recombination
 - Stable defects via recombination with certain impurities
- Some defects: electrically active
- More details: lecture by E. Monakhov

"Shallow" levels (close to valence/conduction band) → reduced charge collection efficiency

28

Laboratory Mesurements

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Introduction (Part I)

Typical Laboratory Setup

Probe Station

Electronics Setup

[H. Feick, PhD Thesis, U Hamburg (1997)]

precise (automatic) positioning of probe needles on bond pads of sensors

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Introduction (Part I)

- Deep Level Transient Spectroscopy (DLTS)
 - Introduce free charge carriers into depleted sensors, e.g. by pulsing bias voltage (0 V or forward bias)
 - Analyze system answer transient, e.g. capacitance over time
 defect concentration, activation energy, electron/hole capture cross section ...
 - More in lecture by Edouard Monakhov on Wednesday

- 1. Cool down sensor under reverse bias, monitor bulk generation current
- Inject free charge carriers at low temperature (e.g. 20 K): forward bias or illumination with laser that fits band gap
- Heat sensor → trapped charges released at specific temperatures: characteristic current peaks

Annealing of Sensor Defects

DESY

Defect annealing

- Above a certain temperature: migration of defects \rightarrow defects can be gettered e.g. at surface or recombine with counterpart (e.g. $Si_l + V \rightarrow Si_s$) or form new defects
- Lattice vibrational energy larger than binding energy: dissociation of complex defects
- Annealing studies: information on defects in addition to activation energy and capture cross section
- Classification
 - Short term beneficial annealing
 - Stable damage
 - Long term reverse annealing

RD50

Summary – defects with strong impact on the device properties at operating temperature

Hamburg Model

10

- Phenomenological "Hamburg model" to describe annealing
- Change in effective charge carrier concentration (or equivalently depletion voltage):

$$\Delta N_{\rm eff} = N_A + N_C + N_Y$$

- Beneficial annealing: $N_A = \Phi_{eq} \sum_i g_{A,i} \exp[-c_{A,i}(T) t]$
- Stable damage:

$$N_C = N_{C,0} \left(1 - \exp[-c_C \Phi_{eq}]\right) + g_C \Phi_{eq}$$

• Reverse annealing:

$$N_Y = g_Y \Phi_{\text{eq}} \left(1 - \frac{1}{1 + g_Y \Phi_{\text{eq}} c_Y(T) t} \right)$$

Used extensively to predict silicon detector lifetimes, e.g. CDF, CMS

A Look into the Future

- Current CERN planning: run LHC until about 2030 ("LHC-HL")
 → integrated luminosity: 3000 fb⁻¹
- R&D on detectors for very high equivalent fluences > 10¹⁶ cm⁻²
 - 3D silicon sensors
 - Strip sensors with p-bulk
- 3D silicon sensors at a glance:
 - Instead of strips: narrow (10 µm) columns along sensor thickness
 - Advantage: decouple charge collection and sensor thickness
 - Shorter charge collection distance: lower depletion voltage, faster signal, less trapping → radiation hard

Sensors with p-Type Bulk

p-in-n Sensor after Type Inversion

n-in-p Sensor (or n-in-n after type inversion)

n-bulk (after type inversion)

- Majority charge carriers: holes (smaller mobility than electrons)
- Depletion zone builds from (unsegmented) back side
 → sensor must be fully depleted

• p-bulk

- No type inversion via radiation
- Majority charge carriers: electrons
- Depletion zone builds from segmented side
 → can run underdepleted
- Simpler single-sided processing
- n-in-p sensors serious candidate for ATLAS silicon strip detector upgrade
- CCE shows not reverse annealing, even when underdepleted
- Current interpretation: charge multiplication effects (not described by Hamburg model), even CCE > 1 for very high bias voltage (1700 V)
 → feasible in LHC experiments?

Mara Bruzzi and Michael Moll on behalf of RD50 – LHCC, February 18, 2010 – Slide 15

Summary

- Radiation damage to silicon sensors at hadron colliders
 - Equivalent fluences up to 10¹⁶ 1 MeV n per cm² in LHC high-luminosity phase
 - Major challenge for operating silicon detectors at hadron colliders
- Macroscopic consequences:
 - Change of effective charge carrier concentration \rightarrow increased depletion voltage
 - Increase leakage current \rightarrow more noise, thermal runaway
 - Reduced charge collection efficiency \rightarrow smaller signals
- Microscopic understanding:
 - Point defects and clusters, some are electrically active
 - Laboratory measurements: *I*–*V* and *C*–*V* characteristics, DLTS, TSC, annealing
 - Phenomenological Hamburg model
- Active field of research: exploring new sensor types, production methods, and behavior at very high fluences

Additional Material

The Hamburg connection

 R. Wunstorf, Systematische Untersuchungen zur Strahlenresistenz von Silizium-Detektoren für die Verwendung in Hochenergiephysik-Experimenten, PhD Thesis, U Hamburg 1992

 M. Moll, *Radiation Damage in Silicon Particle Detectors*, PhD Thesis, U Hamburg 1999

- CERN RD50 collaboration: <u>http://www.cern.ch/rd50</u>
- Books:
 - G. Lutz, Semiconductor Radiation Detectors, Springer, 2007
 - L. Rossi, P. Fischer, T. Rohe, N. Wermes, *Pixel Detectors*, Springer, 2006
 - S.M. Sze, *Physics of Semiconductor Devices*, Wiley, 1985

Fall School of the IRTG "Development and Application of Intelligent Detectors" Heidelberg, November 1–5, 2010

Operating Silicon Detectors at Hadron Colliders

Ulrich Husemann Deutsches Elektronen-Synchrotron DESY

Outline

- Short history of silicon detectors at hadron colliders
 - Evolving requirements and design considerations
 - Lessons learnt for the LHC and beyond
- In-situ measurement of radiation damage during operation
 - How can in-situ and laboratory measurements be compared?
 - Many examples taken from CDF experiment at Fermilab Tevatron (LHC only in its first year, difficult to find material)
- Mitigation of radiation damage

- Variants of silicon strip detectors used at hadron colliders
 - One or both sides of the sensor segmented: single-sided vs. double-sided
 - DC coupling or AC coupling of readout system
 - Output of frontend chips: analog or digital readout

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Silicon Detectors

adiation Damage

DESY

Silicon bulk damage:

- Displacement of atoms through nonionizing energy loss (NIEL)
- NIEL hypothesis: damage from all particle types scales with NIEL
- NIEL normalized to fluence of 1 MeV neutrons with hardness factor κ

$$\Phi_{\mathsf{eq}} = \kappa \Phi = \kappa \int \phi \mathsf{d}E$$

- Damage to silicon sensor surface and readout electronics
 - Driven by ionizing radiation dose
 - Reversible damage: single-event upsets (see lecture by Ketil Røed)
- Irreversible damage: charge trapping at Si–SiO₂ interface (more in lecture by Ivan Peric)

5

- Microscopic effects and macroscopic consequences (simplified)
 - Deep level defects \rightarrow bulk current generation \rightarrow leakage current $\Delta I = \alpha \Phi$
 - Shallow level defects \rightarrow charge trapping \rightarrow lower charge collection efficiency
 - Shallow level defects as additional acceptor levels \rightarrow change of effective charge carrier concentration \rightarrow type inversion from n-bulk to (effective) p-bulk

History of Silicon Detectors at Hadron Colliders

Early history

- 1951: first particle detector based on germanium pn-diode (McKay)
- 1960ies–1970ies: semiconductor detectors important for nuclear physics
- 1980: first silicon microstrip detector (J. Kemmer et al.)
- First particle physics application of silicon detectors: high-rate fixed target experiments for charm physics (esp. *D* meson lif
 - CERN NA11 (AC ~1983 ~100 mm > Z
 - Fermilab E691 (Tagged i Hotel i Side View TARGET REGION Spectrometer): ~1985
- Silicon microstrip vertex trackers at electron-positron colliders (1990s)
 - All LEP detectors, Mark-II at SLC
 - B factories: BaBar, Belle

First Microstrip Detectors in Beam

24 x 36 mm, 1200 strips 20 μm strip pitch 60 μm readout pitch

UA2 Silicon Pad Detector

- First application in a hadron collider (CERN SppS)
 - Single cylinder of silicon pads (8.7 × 40 mm²), 60 cm long, 14.7 cm radius, 1 m² of sensor surface
 - Mounted directly on the beam pipe
- First radiation damage
 - Beam incident during injection (unnoticed): exposure to 30 Gy of ionizing radiation + neutron flux of 2.8×10⁹ cm⁻²
 - Consequence: 14% noise increase through higher leakage currents
 - Today: sophisticated interlock systems to (largely) avoid beam incident

Significant damage through single incidents in addition to long-term radiation effects

8

Silicon Detector in CDF Run I a

• History:

- First ideas in 1983 (A. Menzione)
- Concept of silicon detectors at hadron colliders controversial within CDF (e.g.: occupancy of inner layers too high?)
- First design: SVX (1992–1993)
 - 2 barrels with 4 layers each,
 51.1 cm long, radii: 3–8 cm
 - Single sided sensors (60 µm pitch), DC-coupled readout
 - Short lifetime mainly due to radiation damage to the readout chip: increased occupancy, reduced efficiency

Electronics is the culprit this time \rightarrow avoid single points of failure

But Nevertheless...

PHYSICAL REVIEW D

VOLUME 50, NUMBER 5

1 SEPTEMBER 1994

ARTICLES

Evidence for top quark production in $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV

F. Abe,¹³ M. G. Albrow,⁷ S. R. Amendolia,²³ D. Amidei,¹⁶ J. Antos,²⁸ C. Anway-Wiese,⁴
G. Apollinari,²⁶ H. Areti,⁷ P. Auchincloss,²⁵ M. Austern,¹⁴ F. Azfar,²¹ P. Azzi,²⁰ N. Bacchetta,¹⁸
W. Badgett,¹⁶ M. W. Bailey,²⁴ J. Bao,³⁴ P. de Barbaro,²⁵ A. Barbaro-Galtieri,¹⁴ V. E. Barnes,²⁴ B. A. Barnett,¹² P. Bartalini,²³ G. Bauer,¹⁵ T. Baumann,⁹ F. Bedeschi,²³ S. Behrends,² S. Belforte,²³ G. Bellettini,²³ J. Bellinger,³³ D. Benjamin,³² J. Benlloch,¹⁵ J. Bensinger,² D. Benton,²¹ A. Beretvas,⁷ J. P. Berge,⁷ S. Bertolucci,⁸ A. Bhatti,²⁶ K. Biery,¹¹ M. Binkley,⁷ F. Bird,²⁹ D. Bisello,⁰⁰ R. E. Blair,¹
C. Blocker,²⁹ A. Bodek,²⁵ V. Bolognesi,²³ D. Bortoletto,²⁴ C. Boswell,¹² T. Boulos,¹⁴ G. Brandenburg,⁹
E. Buckley-Geer,⁷ H. S. Budd,²⁵ K. Burkett,¹⁶ G. Busetto,²⁰ A. Byon-Wagner,⁷ K. L. Byrum,¹ C. Campagnari,⁷ M. Carthers,¹⁴ D. Carlsmith,³³ A. Castro,²⁰ Y. Cen,²¹ F. Cervelli,²³
J. Chapman,¹⁶ M.-T. Cheng,²⁸ G. Chiarelli,⁸ T. Chikamatsu,³¹ S. Cihangir,⁷ A. G. Clark,²³ M. Cobal,²³
M. Contreras,⁵ J. Conway,⁵⁷ J. Cooper,⁷ M. Cordelli,⁸ D. P. Coupal,²⁹ D. Crane,⁷ J. D. Cunningham,²
T. Daniels,¹⁵ F. DeJongh,⁷ S. Delchamps,⁷ S. Dell'Agnello,²³ M. Dell'Orso,²³ L. Demortier,²⁶ B. Denby,²³
M. Deninno,³ P. F. Derwent,¹⁶ T. Devlin,²⁷ M. Dickson,²⁵ S. Donati,²³ R. B. Drucker,¹⁴ A. Dunn,¹⁶ K. Einsweiler,¹⁴ J. E. Elias,⁷ R. Ely,¹⁴ E. Engels, Jr.,²² S. Eno,⁵ D. Errede,¹⁰ S. Errede,¹⁰
Q. Fan,²⁵ B. Farhat,¹⁵ I. Fiori,³ B. Flaugher,⁷ G. W. Foster,⁷ M. Franklin,⁹ M. Frautschi,¹⁸
J. Freeman,⁷ J. Friedman,¹⁵ H. Frisch,⁵ A. Fry,²⁹ T. A. Fuess,¹ Y. Fukui,¹³ S. Funaki,³¹
G. Gagliardi,²³ S. Galeotti,²³ M. Gallinaro,²⁰ A. F. Garfinkel,²⁴ S. Geer,⁷ D. W. Gerdes,¹⁶ P. Giannetti,²³
M. Giokaris,²⁶ P. Giromini,⁸ L

... The Top!

Silicon Detector in CDF Run I b

- Second attempt: SVX' (operated 1993–1996)
 - Mechanical design similar to SVX, slightly smaller inner radius (2.8 cm)
 - Radiation hard readout chip
 - AC-coupled readout with FOXFET (Field Oxide FET) biasing
- Lifetime limitation:
 - Signal-to-noise ratio (S/N) decreases faster than expected (attributed to FOXFET biasing)
 - Reduction of SNR partly compensated by changes in detector operation (integration time, temperature, bias voltage)

Some limitations can be overcome "after the fact" by clever software (written by clever people)

- Secondary vertex *b*-tagging and radiation damage
 - Efficiency drops quickly for S/N smaller than approx. 3
 - But: top quark discovery with data taken with S/N of $6 \rightarrow 3$
- Similar discussion ongoing for Higgs boson sensitivity in planned Tevatron Run III (2012–2015)

12

CDF SVX II: Double-Sided & AC-Coupled

- Workhorse for CDF silicon tracking in Tevatron Run II, operated since 2001
- Pre-LHC-era module design
 - 5 layers of double-sided silicon sensors at radii of 2.5–10.6 cm
 - Layers 0, 1, 3 (Hamamatsu): axial and 90° strips
 - Layers 2 and 4 (Micron): axial and 1.2° stereo strips
 - Strip pitch: 60–140 µm
 - AC-coupled readout: microdischarges limit bias voltage to 170 V (Hamamatsu) and 80 V (Micron)
- More on performance & radiation hardness later

13

Material and radiation considerations:

- Below r = 2 cm, 0.01 X₀ of additional material does not matter, but track impact parameter resolutions increases greatly
- Low material: remove readout electronics from tracking volume, transmit analog signals to chips → showed problems with pickup noise during operation
- Single-sided "LHC style" sensors (i.e. following LHC design rules) available:
 - "Regular" FZ sensors (Hamamatsu, SGS Thomson)
 - Oxygenated sensors (Micron)
 → believed to be more radiation hard
- DØ added a similar beam-pipe layer ("Layer 0") with improved readout (e.g. new SVX4 readout chip) in 2006

Insertion of L00: 300 µm clearance!

ATLAS Inner Tracking

[atlas.ch]

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Silicon Detectors

16

- Sensor and module design:
 - Sensor: single-sided p-in-n, AC coupled, 285 μm thick, strip pitch: 80 μm
 - Module: 2×2 sensors (6×6 cm² each) glued back to back, stereo angle of ±20 mrad
 - Binary readout (i.e. digital readout stripped down to "hit—no hit")
- Radiation hardness: survive 10 years of LHC operation \rightarrow designed to run stably at 500 V after $\phi_{eq} = 2 \times 10^{14} \text{ cm}^{-2}$ (initial bias voltage: 150 V)

CMS Inner Tracking

17

CMS Tracker

18

- Sensor and module design:
 - Sensor: single-sided p-in-n, AC coupled, 320/500 µm thick, varying strip pitch (two innermost inner and outer layers: double layers with 100 mrad stereo angle)
 - Modules: 1 thin sensor in inner and 2 thick sensors in outer part (10×10 cm² each)
 - Analog readout at front-end chip, digitized outside tracking volume
- Radiation hardness: survive 10 years of LHC operation ≈ 500 fb⁻¹ ≈ 2×10¹⁴ cm⁻² 1 MeV neutron equivalents

CMS Tracker Outer Barrel Rod

[CMS, 2008 JINST 3 S08004]

- LHC long-term perspective: 3000 fb⁻¹ by 2030
 - Phase 0 (2012): energy increase to 13–14 TeV
 - Phase I (~2015): moderate luminosity increase
 - Phase II (~2020): high-luminosity phase ("LHC-HL", formerly known as Super-LHC)

- y (r 4cm) ~ 3 10 cm
 New technologies considered for innermost pixel detector layers
 - 3D silices Super LHC (2015 ?) L 10³⁵ ² ¹
 - Diamond: "intrinsically radiation hard"
- Evolution of established technologies
 - Planar hybrid pixel detectors to cover large areas with pixels
 - n-in-p strip detectors: more radiation hard

20

Radiation Damage and Running Experiments

Issue	Ideal Environment	Running Experiment
Radiation monitoring	Take monitoring data as often as required	Must sacrifice good data to monitor detector performance
Measurement environment	Controlled lab environment (temperature,)	Environment cannot be fully controlled, e.g. insufficient instrumentation
Accessibility of components	Lab: everything accessible	Most of detector inaccessible

In the following: some real-life examples from the CDF silicon detectors (thanks to the CDF Silicon Operations Group for the material!)

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Silicon Detectors

CDF: Single Event Upsets

Part of DAQ located in collision hall:

- 58 Fiber Interface Boards (9U VME, 17 Altera 7128 FPGAs each)
- FIBs contain "sequence RAM" for sequence of chip commands

DAQ problems due to single event upsets:

- FIB sequence RAM corruption (1 per day): mostly unnoticed, sometimes corrupted data
- FPGA burn-out on FIB (1–2 per year): VME backplane blocked

Keep sensitive electronics out of the experimental hall (if you can!)

23

CDF: Power Supplies

- Common failure modes of CAEN SY527 main frame:
 - Spontaneous switch-off and reboot of CPU
 - CAENnet communication loss
 - Corrupted read-back of currents/voltages
- Short-term fix: reboot ("HockerizeTM") crate CPU
- Problems most probably beam-related:
 - Failure rate increases with increasing luminosity (and losses?)
 - Crates in areas with higher radiation dose (west side = proton side) seem to be more likely to fail

Hard to get more than just "evidence" for beam-related operational problems

24

CDF Radiation Monitoring

Radiation field from $p\bar{p}$ collisions

- Radiation field measured by >1000 thermo-luminescent dosimeters (TLDs) in tracking volume
- Accurate radiation map
- *z*-dependent radial scaling: dose proportional to $r^{-\delta}$ with 1.5 < δ < 2.1
- Dose dominated by collisions (> 90%), remainder from beam losses

• Linear increase of bulk leakage current I_{leak} with fluence Φ : $\Delta I_{\text{leak}} = \alpha \Phi$

with α "damage parameter"

 Assume: change in observed bias current dominated by change in leakage current

 $\Delta I_{\rm bias} \approx \Delta I_{\rm leak}$

 Note: leakage currents strongly temperature-dependent, typically normalized to 20°C

Impossible to measure theoretical quantities like "leakage current" directly in real experiment, there's always the rest of the detector "in the way"

Using CDF SVX II as a Dosimeter

Difficult to compare thermal behavior in detector environment with laboratory measurements (e.g. annealing: 80 minutes at 60°C) 1. Fix normalization: measure effective damage parameter by comparing with TLD measurements:

 $lpha_{\mathrm{eff}}^{\mathrm{CDF}}$ = (4.39 \pm 0.02) imes 10⁻¹⁷ A/cm

2. Extract flux as a function of radius, e.g. for SVX II Layer 0 $\frac{\Phi_{L0}}{\int \mathcal{L} dt} = (0.93 \pm 0.26) \times 10^{13} \frac{1 \text{ MeV } n}{\text{cm}^2 \text{ fb}^{-1}}$

(estimated from measured dose assuming NIEL scaling)

- Large uncertainties:
 - Temperature model: 13%
 - Extraction of α: 20%

Monitoring of Radiation Damage

- Signal: cluster charge from from $J/\psi \rightarrow \mu\mu$ (corrected for path length of track in silicon)
- Noise: regular calibration runs
- Extrapolation (assuming full depletion)

 $S/N = \frac{ax+b}{c\sqrt{x}+d}$

signal: charge collection efficiency reduction ~ Φ noise: leakage current increase ~ $\sqrt{\Phi}$

- Regular monitoring of operational parameters
 - Leakage current: bias current measurement (usually included in slow control)
 - Depletion voltage from signal vs. bias scans: Expected behavior (type inversion, ...)? Signs of efficiency loss through under-depletion?

Depletion Voltage: Signal vs. Bias

- Dedicated data-taking runs ("Signal Bias Scans")
 - Study collected charge of silicon hits from good tracks during colliding beams operation

 - Determine V_{dep} e.g. as 95% amplitude of sigmoid fit
- Works for entire detector, but consumes valuable beam time

Cannot measure depletion voltages via C–V curves in a running experiment, also results may not be 100% compatible

- Measurement idea: inter-strip thermal noise on *n* side cleared by applying bias voltage → fully depleted detector has lower noise level
- Works only for double-sided sensors (e.g. CDF SVX II)
- Advantage: does not require beam in accelerator → no interference with data-taking
- Method does not work after after type inversion (no p stops on p⁺ side)

30

Relative Bias Voltage (V)

Latest CDF Bias Scan Results

- Depletion voltage evolution for innermost layers: L00 and SVX II Layer 0
 - Straight-line fit to extrapolate to higher luminosities (Run III): average and individual ladders \rightarrow fairly consistent behavior
 - As expected: innermost SVX II layer gets inefficient first, L00 will survive

DØ Depletion Voltage Results 2008

 DØ methodology very similar to CDF: signal-bias and noise-bias scans (which stopped working after type inversion)

New: conversion to equivalent fluence, fit to Hamburg model (radial dependence of radiation field floating in fit)

IRTG Fall School 2010, Heidelberg, November 1–5, 2010, U. Husemann: Silicon Detectors

Mitigation of Radiation Damage

Benefits of operating at lower temperatures

- Lower leakage currents \rightarrow less noise
- Reduction of reverse annealing effects → longer lifetimes

Limitations

- Technical imitations: minimum temperature of chiller system, coolant, piping, ...
- Challenge to keep detector cold at all times: maintain full cooling even during power outages & long shutdown periods
- LHC: coolant at –25°C
 - Sensor temperatures around –10°C
 - High-lumi upgrade: CO₂-based cooling systems favored → -35°C

Radiation Monitoring at the LHC

- ATLAS: deployed 14 small detector modules in inner detector
 - Ionizing dose: RADFETs
 - Equivalent fluence Φ_{eq}: PIN diodes and pad diode made of epitaxial silicon
 - Thermal n: radiation-hardened transitors
- CMS: Measurements of depletion voltage with signal-bias scans and noise-bias scans
- CMS: ideas to use tracker laser alignment system
 - Measure charge produced by well-defined laser pulse as a function of bias voltage
 - Pro: no beam time consumed
 - Con: tests only few modules

34

- Radiation hardness: critical for any tracking detector at a hadron colliders
- Lots of progress on the level of R&D (e.g. RD50), but findings must be applied to real-life detectors
 - Technologies typically frozen 5–10 years before start of operation
 - In-situ measurements more difficult than laboratory measurements: accessibility, instrumentation, thermal behavior, ...
- Hadron collider experiments:
 - Careful monitoring of radiation damage → in-situ results are consistent with laboratory measurements
 - Mitigation of radiation damage through operational measures
 - Interesting results coming up from the LHC

35

Backup Slides

CDF SVX II Temperature Model

- Convention: normalize bias currents to 20°C
- SVX II: temperature sensors (RTDs) mounted on support structure ("bulkhead"): no direct measurement on silicon sensor, need extrapolation
- Temperature extrapolation relies on early finite element analysis for sensor temperature → large systematic uncertainties of temperature correction factor (13%)

Difficult to compare thermal behavior in detector environment with laboratory measurements (e.g. annealing 80 minutes at 60°C)