

Stayin' Alive Keeping the particle detectors at the LHC up to date

Physikalisches Kolloquium, Universität Siegen, December 16, 2021 Ulrich Husemann, Institute of Experimental Particle Physics, Karlsruhe Institute of Technology

KIT – The Research University in the Helmholtz Association

CERN and the Large Hadron Collider

Suisse

-rance

The world's most powerful particle collider:

HCb

CERN Prévessin

Proton-proton and heavy-ion collisions at the highest energies (so far: 13 TeV center-of-mass energy in pp) Four large experiments: ATLAS, CMS, LHCb, ALICE

Physikalisches Kolloquium Universität Siegen

ATLAS

The Standard Model

- Description of fundamental particles and forces in Nature in the standard model of particle physics:
 - Matter is made of twelve fundamental building blocks (spin-1/2): six quarks and six leptons (and their antiparticles)
 - Four fundamental forces, mediated by **force carriers** (spin-1)
 - Higgs boson (spin-0): responsible for masses of quarks, leptons, and force carriers
- Very successful theory, based on relativistic quantum field theory and symmetry principles

Higgs Boson: Discovery & Properties

A Theorist's View

N. Arkani-Hamed, **CERN** Courier, March 2019

The CMS Stairway to Heaven

CMS Preliminary

Precise measurements of 100s of known standard-model processes → excellent agreement with theoretical predictions

... and more than 1000 doctoral researchers finished their theses on LHC topics in Germany

What's Next?

\rightarrow at least 10× the data of LHC Runs 1–3

What About the Detectors?

- Very high readout rates: 40 MHz collision rate, 1000s of particles per event
- Harsh radiation environment: ionizing dose above 1 MGy, nonionizing fluence above 10¹⁵ n_{eq}/cm²
- Prime challenge: keep the LHC detectors alive and up to date

Physikalisches Kolloquium Universität Siegen

Outline of this Colloquium

How we got here: CMS today

The Compact Muon Solenoid **Technical Proposal**

What keeps us busy: Upgrades for HL-LHC

CMS

The Phase-2 Upgrade of the **CMS** Tracker Technical Design Report

How we prepare for the future

Outline of this Colloquium

How we got here: CMS today

LABORATOIRE EUROPÉEN POUR LA PHYSIQUE DES PARTICULES CERNI EUROPEAN LABORATORY FOR PARTICLE PHYSICS

The Compact Muon Solenoid **Technical Proposal**

LHC (Pre-)History

50 years of Hadron Colliders at CERN

14th October 2021

MAIN AUDITORIUM édérick Bordry and Joachim Mnich e ISR machine: Steve Mye R physics: Ugo Amaldi SPS collider and LHC machines:

14:00 - 18:00

ider physics: Felicitas Pauss e LHC project: Chris Llewellyn-Smith IC physics: Alice Ohlson, Patrick Rieck, Abideh Jafa ne view from the USA: Young-Kee Kim -LHC and beyond: Fabiola Gianotti

Entry to the main auditorium requires a valid COVID certificate Pre-register at https://indico.cern.ch/event/1068633 Pre-registration does not guarantee entry. Full details available on the Indico web site

https://indico.cern.ch/event/1068633/

1976: first ideas for the Large Electron-Positron (LEP) collider at CERN \rightarrow use tunnel for hadron collider later

1984: LHC discussed at workshops of **European and International Committees** for Future Accelerators (ECFA, ICFA)

1990–1992: LHC workshops in Aachen and Evian \rightarrow formation of experimental collaborations

1994: LHC approved by CERN Council

CMS History

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

> PRESHOWER Silicon strips ~16 m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

Based on 201 U S Φ S 3 (2014)022032

October 1992: Letter of Intent

December 1994: **Technical Proposal**

Intense research and development phase → Technical Design **Reports** for all subsystems

2008: first beam → Run 1: 2010–2012 → Run 2: 2015–2018

2017: Pixel Detector Upgrade

\rightarrow new digital readout

New silicon pixel detector to keep up with LHC performance in Run 2: \rightarrow more layers, smaller inner radius, improved mechanics/cooling/powering

Physikalisches Kolloquium Universität Siegen

Pixel Module on Handle

Pixel Module Assembly at KIT

Outline of this Colloquium

How we got here: CMS today

The Compact Muon Solenoid **Technical Proposal**

What keeps us busy: Upgrades for HL-LHC

Physikalisches Kolloquium Universität Siegen

CMS at HL-LHC

- HL-LHC challenge for tracking detectors: 5× higher rates, 10× more data
- Goal: comparable performance in much more difficult environment Fast and (even more) radiation-hard detectors
 - Tracking up to pseudorapidities of $\eta = \pm 4$ (was $\eta = \pm 2.5$ before)
 - Level-1 (hardware) triggering based on tracking information

HL-LHC Radiation Environment

- Proton-proton collisions: primary hadrons (mainly pions), **secondary** particles from interactions in detector and **backscattering**
- Effects on silicon sensors and electronics:
 - Ionization: fully **reversible** in sensor **bulk**, but **surface** damage
 - Non-ionizing energy loss (NIEL): crystal lattice damage in detector bulk (point and cluster defects) \rightarrow time and temperature dependent ("annealing")
 - Consequence: changes in electronic properties → increased noise and heat, reduced signal

Point Defects in a Silicon Lattice

J. Gro (2008), after

The Case for L1 Track Triggering

Relatively low transverse momenta remain relevant (e.g. Higgs physics) More sensitive level-1 trigger required to control trigger rate \rightarrow track trigger

Physikalisches Kolloquium Universität Siegen

Track Triggering

- Step 1: transverse momentum (p_T) filtering on detector module level $\rightarrow p_{\rm T}$ modules
- Step 2: FPGAbased fast electronics to provide tracks for Level-1 trigger

Outer Tracker

Physikalisches Kolloquium Universität Siegen

pt Modules

Outer part of Outer Tracker: **2S modules** \rightarrow two silicon strip sensors

Physikalisches Kolloquium Universität Siegen

2S Module Assembly at KIT

1. Glue polyimide HV isolation and attach HV tails on sensor backside 2. Wire-bond and encapsulate HV tails

Optical inspection

3. Glue sensors on AI-CF brides

^O, HV test backside isolation ^O Sensor I(V)

^O Module metrology

4. Glue readout and service hybrids on bare module

S. Maier

Probe Station & Clean Room

Physikalisches Kolloquium Universität Siegen

Example: Module Metrology Station

*p*_T selection functionalities relies on **perfectly** parallel sensors (at most 40 µm tilt on 10 cm strips) \rightarrow measure **relative coordinates** of sensors in custom metrology station

Sensor

2S Prototype Module on Carrier

Physikalisches Kolloquium Universität Siegen

Beam Tests

Test of prototype detectors in **particle beams**, e.g. at DESY (5–6 GeV e[±], beam hodoscope) \rightarrow spatial resolution, detailed efficiency, ...

https://particle-physics.desy.de/test_beams_at_desy/beam_generation/index_ger.html

Physikalisches Kolloquium Universität Siegen

Beam Tests: Results

Physikalisches Kolloquium Universität Siegen

CMS Tracker @ HL-LHC: Outlook

- Where do we stand at the end of 2021?
 - Silicon sensors: **excellent quality** in pre-series production (5% of all sensors)
 - → moving to sensor production
 - Detector modules: very advanced prototypes, all tooling and test stands in place, final optimizations upcoming \rightarrow ready for pre-series in 2022

Module production at KIT: about 2000 2S modules in 2023/2024

Outline of this Colloquium

How we got here: CMS today

The Compact Muon Solenoid **Technical Proposal**

What keeps us busy: Upgrades for HL-LHC

CMS

The Phase-2 Upgrade of the **CMS** Tracker Technical Design Report

How we prepare for the future

R&D for Future Projects

LHC and HL-LHC: typical **R&D time scales of 10 years**

many universities and research centers in the future?

How should the particle physics community organize targeted R&D programs in

Physikalisches Kolloquium Universität Siegen

How to Organize Targeted R&D? 70 - 20 - 10AND ALSO THE CLIENTS, ALL I MAKE SURE YOU THE ACCOUNT EXECS, HEARD LET'S COORDINATE WITH THE PROJECT LEADERS, WAS MEET THE BRAND MANAGER STRATEGIC PLANNING, "GIVE AGAIN AND THE CATEGORY FACILITIES MANAGE-UP." IN A MANAGER. MENT, PRODUCT YEAR. MANAGERS, MARKETING, AND I.T.

Karlsruhe Institute of Technology

- Strike good balance:
 - **Current** colliders
 - **Future** colliders
 - Blue-sky R&D
- **Coordinate** well: pool resources, stay focused, avoid duplication
 - Detector builders are humans: think of recruitment, training, recognition, careers

How to Organize Targeted R&D?

- Several successful R&D models in particle physics community:
 - CERN **RD** programs, e.g. RD50 (radiation hard semiconductor devices)
 - Collaborations to develop technologies for future colliders, e.g. CALICE (highly granular calorimetry for energyfrontier electron-positron colliders)
 - European programs, e.g. EUDET \rightarrow AIDA \rightarrow AIDA2020 \rightarrow AIDAinnova
 - Partnerships with industry

Physikalisches Kolloquium Universität Siegen

European Strategy for Particle Physics

- Highest priorities: Full exploitation of LHC and HL-LHC Next collider: electron-positron "Higgs factory"

European particle physics community updated its strategy in 2020

Document stresses importance of innovations in accelerators and instrumentation:

"The community should define a global detector" R&D roadmap that should be used to support proposals at the European and national levels."

The European Committee for Future Accelerators Detector R&D Roadmap Process Group

THE 2021 ECFA DETECTOR RESEARCH AND DEVELOPMENT ROADMAP

ECFA Detector Roadmap

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

			< 2030	2030- 2035	2035- 2040	2040- 2045	> 20
aseous	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with long-term stability		•	-		
	DRDT 1.2	Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes		•	-		
	DRDT 1.3	Develop environmentally friendly gaseous detectors for very large areas with high-rate capability			•	-	

		DRDT 3.1	Achieve full integration of sensing and microeled CMOS pixel sensors
	Solid	DRDT 3.2	Develop solid state sensors with 4D-capabilities calorimetry
	state	DRDT 3.3	Extend capabilities of solid state sensors to ope fluences
		DRDT 3.4	Develop full 3D-interconnection technologies fo in particle physics

https://indico.cern.ch/event/957057/page/23281-the-roadmap-document

Physikalisches Kolloquium Universität Siegen

Summary

- Collider-based particle physics experiments: truly long-term projects
- Experiments require focused **10-year R&D programs**
- Pushing the boundaries in instrumentation for future projects remains a strong focus of particle physics

https://pearljam.com/music/album/alive

Physikalisches Kolloquium Universität Siegen

Acknowledgments

BMBF funding for large-scale research infrastructures (FIS)

CMS Tracker group at ETP: T. Barvich, B. Berger, E. Butz, A. Dierlamm, A. Droll, U. Elicabuk, F. Hartmann, R. Koppenhöfer, G. Kösker, S. Maier, J.-O. Müller-Gosewisch, Th. Müller, M. Neufeld, H. J. Simonis, P. Steck, L. Stockmeier, A. Weddigen, F. Wittig.

Physikalisches Kolloquium Universität Siegen

