

Die Vermessung der Atto-Welt Elementarteilchen und ihr Nachweis am Large Hadron Collider

Lehrerfortbildung der Fakultät für Physik des KIT Karlsruhe, 4. Juli 2012

www.kit.edu

Wer bin ich?

Promotion

Siegen 2005 HERA-B-Experiment am Deutschen Elektronen-Synchrotron DESY

UNIVERSITÄT SIEGEN

Postdoc Rochester, Yale (2005–2008)

CDF-Experiment am Fermi National Accelerator Laboratory, Chicago

Nachwuchsgruppenleiter DESY und HU Berlin (seit 2008) ATLAS-Experiment am CERN, Genf

Professor

Karlsruher Institut für Technologie, Experimentelle Kernphysik (seit Juli 2011) CMS-Experiment am CERN, Genf

Von Gauß und Humboldt zum LHC

- Im echten Leben wie im Roman von Daniel Kehlmann
 - C. F. Gauß: lebte nur im Königreich Hannover
 - A. v. Humboldt: große Südamerikareise
 - Beide haben unser Wissen über die Welt signifikant vorangebracht
- Physik am Large Hadron Collider (LHC)
 - Theoretische Physiker: komplizierte Berechnungen → Vorhersagen der physikalischen Prozesse am LHC
 - Experimentalphysiker: Aufbau und Betrieb großer Teilchenbeschleuniger und Experimente
 - Erst im Zusammenspiel: physikalische Resultate und ihre Interpretation

Faszination Teilchenphysik

- Physik wie ist unsere Welt aufgebaut?
 - Was sind die fundamentalen Bausteine unserer Welt?
 - Technologie wie funktioniert das?
 - Riesige Nachweisgeräte, µm-Präzision
 - Verarbeitung der Datenflut

Gesellschaft

- … und wozu ist das alles gut?
- Neues Weltbild, vgl. Quantenmechanik?
- Internationale Zusammenarbeit
- Spin-offs \rightarrow direkter wirtschaftlicher Nutzen

Teilchenphysik: Stand der Dinge 2012

6 04.07.2012 Lehrerfortbildung 2012: Die Vermessung der Atto-Welt

Das Standardmodell der Teilchenphysik

- Seit 1960er Jahren: "Standardmodell der Teilchenphysik"
 - 12 Elementarteilchen in drei Familien
 - Drei Kräfte
- Experimentell mit großer Genauigkeit bestätigt

Kräfte im Standardmodell

- Kräfte ("Wechselwirkungen"): Austausch von Überträgerteilchen mit Spin 1 ("Eichbosonen")
 - Starke Wechselwirkung → Eichbosonen: 8 Gluonen
 - Elektromagnetische Wechselwirkung → Eichboson: Photon
 - Schwache Wechselwirkung → Eichbosonen: W[±]-, Z-Bosonen
- Vereinigung der elektromagnetischen und schwachen Wechselwirkung: elektroschwache Wechselwirkung

[http://www.particlephysics.ac.uk/]

Teilchen im Standardmodell

- Alle Teilchen: Fermionen (Spin 1/2)
- Elektrische Ladung:
 - Leptonen: ganzzahlig
 - Quarks: gebrochenzahlig
- Starke Kraft: "Confinement"
 - Keine freien Quarks, Bindung zu Hadronen = Baryonen + Mesonen
 - Baryonen: Quark + Quark + Quark
 - Mesonen: Quark-Antiquark-Paar
- Vorkommen in der Natur:
 - Alle Materie auf der Erde: Teilchen der 1. Familie
 - 2. und 3. Familie dennoch wichtig: z. B. kosmische Strahlung, Quantenkorrekturen

Offene Fragen 2012: Das Higgs-Teilchen

Woher kommt die Masse?

- Masse = relativistisch invariante Masse ("Ruhemasse") der Teilchen
- Woher kommt Massenunterschied zwischen Elementarteilchen der drei Familien?
- Lösung im Standardmodell: Higgs-Teilchen
 - Postuliert von Peter Higgs (und unabhängig von 2 weiteren Forschergruppen) im Jahr 1964
 - Funktion: Higgs-Teilchen "gibt" allen Elementarteilchen Masse (die Masse zusammengesetzter Teilchen ist komplizierter!)
- Parallel zu dieser Veranstaltung (4. Juli 2012, 9:00): Vorstellung neuer Resultate zum Higgs-Teilchen am CERN

Das Standardmodell der Kosmologie

- Seit 10–15 Jahren: konsistentes Modell von der Entwicklung des Universums seit dem Urknall → "Standardmodell der Kosmologie"
 - Passen Teilchenphysik und Kosmologie zusammen?

Dunkle Materie und Dunkle Energie

11 04.07.2012

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

Lösungsideen?

Supersymmetrie ("SUSY")?

- Die "letzte noch fehlende Symmetrie" in der Natur: Spiegelteilchen zu jedem Teilchen im Standardmodell
- Keine Hinweise auf SUSY, einfachste Formen bereits von LHC ausgeschlossen

Zusätzliche Raumdimensionen?

Keine Hinweise am LHC (z. B. mikroskopische schwarze Löcher)

Der Large Hadron Collider

Die Nadel im Heuhaufen

Hunts Needle in a Haystack

How LONG does it take to find a needle in a haystack? Jim Moran, Washington, D. C., publicity man, recently dropped a needle into a convenient pile of hay, hopped in after it, and began an intensive search for (a) some publicity and (b) the needle. Having found the former, Moran abandoned the needle hunt.

- Ziel: Erzeugung und Nachweis neuer Elementarteilchen in Kollisionen bekannter Elementarteilchen "im Labor"
 - Neue Elementarteilchen vermutlich sehr schwer (>100 Protonmassen)
 - Prozesse mit neuen Elementarteilchen sehr selten, z. B. ein Higgs-Boson alle 3,5 Mrd. Kollisionen (produziert, nicht gemessen)
- Lösungen: Experimente an Teilchenbeschleunigern
 - Beschleuniger: höchste mögliche Energie und Kollisionsrate
 - Experimente: effizienter Filter f
 ür seltene neue Prozesse

Warum immer höhere Energien?

- Grundpfeiler der Teilchenphysik:
 - Spezielle Relativitätstheorie (A. Einstein)
 - Quantenmechanik (E. Schrödinger, W. Heisenberg, …)

A. Einstein

- W. Heisenberg
- **Relativitätstheorie:** $E = mc^2$
 - Masse ist eine Form von Energie
 - Kollisionen von Elementarteilchen mit hoher Energie → Produktion neuer schwerer Teilchen

Warum immer höhere Energien?

Unschärferelation (Heisenberg)

• Ort (Δx) und Impuls (Δp) nicht gleichzeitig beliebig genau bekannt:

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$

- Größerer Impulsübertrag → Auflösung kleinerer Strukturen
- Materiewellen (de Broglie):
 - Wellenlänge eines Teilchens mit Impuls p: $\lambda = \frac{h}{p}$
 - Größerer Impuls → kleinere Wellenlänge → höhere Auflösung

Prinzip des Teilchenbeschleunigers

Was ist CERN?

CERN = Europäisches Teilchenphysiklabor Weltweit größtes Labor für Teilchenphysik, gegründet 1954 Historischer Name: "Conseil Européen pour la Recherche Nucléaire" 2500 Angestellte, fast 10000 Gäste (>100 Nationalitäten)

ALICE-Experiment: Schwerionenphysik

Die Vermessung der Atto-Welt

ATLAS-Experiment: Vielzweckexperiment

rich Husemann nphysik (IEKP)

20 04.07.2012 Lehrerfortbildung 2012: Die Vermessung der Atto-Welt

Höchste Energien und Kollisionsraten

Hohe Energie \rightarrow starke Dipolmagnete

- Zwingen Protonen auf Kreisbahn (Lorentzkraft)
- Magnetfelder bis zu 8,3 Tesla
- Supraleitende Magnete: Kühlung mit supraflüssigem Helium bei 1,9 Kelvin

Hohe Kollisionsraten: viele Protonen

- Protonenstrahlen: 1380 Protonenpakete pro Strahl, >100 Mrd. Protonen pro Paket
- Jede Sekunde: 40 Millionen mal 25–30 Kollisionen → mehr als 1 Mrd. "Ereignisse"
- Nur eines von 5 Mio. Ereignisse wird aufgezeichnet, ca. 200 pro Sekunde

Teilchennachweis am LHC

Vorüberlegungen zum Detektordesign

Fragen:

- Wie baue ich einen Detektor f
 ür die Suche nach noch unbekannten Teilchen?
- Welche Teilcheneigenschaften mit welcher Präzision?
- Erwartung: neue Teilchen sehr kurzlebig («10⁻¹² s) → Nachweis (bereits bekannter) Zerfallsprodukte
- Anforderungen an Detektor:
 - Weise möglichst alle Teilchen nach: hermetischer Detektor
 - Teilchen müsen elektrisches Signal im Detektor hinterlassen → Messung beruht auf elektromagnetischer Kraft
 - Messe alle Eigenschaften: Energie, Impuls, Teilchensorte

???

Teilchennachweis

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

CMS – Der Compact Muon Solenoid

Teilchennachweis im CMS-Detektor

Semiklassisches Modell ("Bethe-Formel"):

("Dethe-Former). elektromagnetische Wechselwirkung der Teilchen mit Atomen

- Energieverlust pro Längeneinheit dE/dx ("stopping power")
 - Niedrige Energien: Ionisation
 - Höhere Energien: Abstrahlung von Photonen

26

Geladene Teilchen in Materie

Elektronen und Myonen

- Energieverlust von Elektronen
 - Geringe Masse: m_e = (1/200) m_µ = (1/1800) m_p
 - Wichtigster Mechanismus für Energieverlust: Bremsstrahlung (~ 1/m⁴) (Emission von Photonen im Coulombfeld des Atomkerns)

Elektron

£.

Mvon-Detektor

- Myonen durchdringen mehr Materie als andere geladene Teilchen
 - → Nachweis in äußeren Detektorlagen
 - Myonen sind Leptonen: keine starke Wechselwirkung
 - Myonen sind schwer: Bremsstrahlung vernachlässigbar

Photon

Impulsmessung mit Spurdetektoren

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

Impulsmessung

Messprinzip: Ablenkung in Magnetfeld

Bewegte geladene Teilchen: Lorentzkraft

$$e \vec{v} \times \vec{B} = \frac{mv^2}{r} \cdot \frac{\vec{r}}{r}$$

Homogenes Magnetfeld B: Teilchen auf Helixbahn

Impulsbestimmung:

Impuls senkrecht zu Magnetfeld B ("Transversalimpuls" p_T) bestimmt aus Krümmungsradius r der Teilchenspur

 $p_{\rm T} \,[{\rm GeV}/c] = 0.3 \, B \,[{\rm T}] \cdot r \,[{\rm m}]$

- Ladungsvorzeichen aus Krümmungsrichtung
- Benötigt: Detektoren zur genauen Vermessung von Teilchenspuren

Spur- und Vertexrekonstruktion

- Vermessung der Spuren geladener Teilchen: mehrlagiger Spurdetektor
- Elektrische Signal in jeder Detektorlage → Spurpunkte
- Spuranpassung:
 - Mustererkennung: liegen Spurpunkte auf gemeinsamer Helixbahn?
 - Spurfit: Anpassung der Helixparameter (Krümmungsradius, …)
- Vertexanpassung: zeigen Spuren auf gemeinsamen Ursprungsort ("Vertex")?

Spurdetektoren am LHC

- Frühere Experimente: gasgefüllte Detektoren (z. B. Driftkammern)
- Spurdetektoren aller LHC-Experimente: Halbleiterdetektoren

ATLAS-Siliziumpixeldetektor

Messprinzip:

- Teilchendurchgang: Bildung von "Elektron-Loch-Paaren" in dotiertem Halbleiter
- Fein segmentierte Auslese → hohe Auflösung der Spurpunkte

Siliziumdetektoren im CMS-Experiment

Einzelnes Modul des CMS-Pixeldetektors (ca. 64000 Pixel)

- CMS-Experiment: gesamter Spurdetektor aus Silizium
 - Mehr als 200 m² Detektorfläche, mehr als 60 Milionen Auslesekanäle
 - Innere Lagen: Pixeldetektoren → hohe Auflösung
 - Äußere Lagen: Streifendetektoren → große Abdeckung
- KIT: signifikante Beteiligung an Forschung und Entwicklung sowie Bau des CMS-Spurdetektors

Dotierte Halbleiter

- Physikalische Grundlagen von Halbleiterdetektoren
 - Kristallgitter: 4 Valenzelektronen pro Atom
 - Negative Ladungsträger: freie Elektronen
 - Positive Ladungsträger: Elektronen wandern zwischen freien Positionen im Kristallgitter ("Löcher")

Bändermodell der Energiezustände

- Halbleiter: Bandlücke zwischen Valenzund Leitungsband
- Dotierung: Veränderung der Eigenschaften
 - In-Dotierung: Atome mit 5 Valenzelektronen → zusätzliche Elektronen: "Donatoren"
 - p-Dotierung: Atome mit 3 Valenzelektronen → zusätzliche Löcher: "Akzeptoren"

[Demtröder, Experimentalphysik 3]

pn-Übergang

- Übergang zwischen p-dotiertem und n-dotiertem Halbleiter
 - Diffusion von Ladungsträgern → Rekombination Elektronen und Löcher \rightarrow Verarmungszone ohne freie Ladungsträger
 - Bändermodell: Ferminiveau auf beiden Seiten gleich → Bänder "verbogen" \rightarrow Diffusionsspannung U_D
- Umgekehrte Biasspannung an pn-Übergang
 - Vergrößerung der Verarmungszone
 - Ionisation durch Teilchendurchgang messbar \rightarrow Verwendung als Detektor

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

34

Siliziumdetektor: Funktionsweise

- Detektor: Halbleiterdiode mit pn-Übergang in Sperrrichtung
- Ionisierung des Detektormaterials: Elektron-/Loch-Paare

... und wie sieht sie aus, diese Atto-Welt?

Wie gut passt das Standardmodell am LHC?

viel zu gut ...

Quarks: zusammengesetzte Teilchen?

- Einer der einfachsten Prozesse am LHC: Produktion eines Quark-Antiquark-Paares
- Keine freien Quarks wegen Confinement: Bündel von Teilchen ("Jets")
- Standardmodell: Quarks elementar und punktförmig
 - Falls Quarks nicht elementar: sichtbare "Buckel" im Spektrum der relativistisch invarianten Masse der Jetpaare
 - Jetpaar-Massen bis ca. 4 TeV: keine Abweichungen beobachtet → Quarks "kleiner als" < 0.1 Attometer</p>

Zusammenfassung

- Teilchenphysik am LHC
 - Beschleunigung von Protonen zu höchsten im Labor erreichbaren Energien
 - Teilchennachweis in hochpräzisen Detektoren, z. B. Siliziumdetektoren
 - LHC-Datennahme seit 2010: sehr erfolgreich
- Resultate der LHC-Experimente
 - Keine starken Hinweise f
 ür "neue Physik" jenseits des Standardmodells
 - Jetzt: Neues zum Higgs-Teilchen

Kandidat für Higgszerfall in zwei Photonen

04.07.2012

04.07.2012

Was ist ein p-Wert?

- p-Wert: Maß für "SignifikanzWahrscheinlichkeit, dass beobachtetes Signal (oder noch größeres Signal) aus statistischer Fluktuation des Untergrundes stammt
- p-Wert ist nicht: (1 Wahrscheinlichkeit) für Entdeckung, …
- Kriterium für "Entdeckung": 5 σ der Gaußkurve \rightarrow p = 2,9·10⁻⁷

Resultate: ATLAS und CMS

ATLAS und CMS haben mit einer Signifikanz von jeweils 5 σ ein neues Boson mit einer Masse 125–126 GeV entdeckt