Tag der Wissenschaften Friedrich-Gymnasium Luckenwalde 16. Februar 2009

Urknall im Labor Teilchemphysik am Large Hadron Collider

Ulrich Husemann Deutsches Elektronen-Synchrotron

Was ist DESY?

DESY = Deutsches Elektronen-Synchrotron

- Nationales Forschungszentrum in der Helmholtz-Gemeinschaft
- Zwei Standorte: Hamburg (seit 1959) und Zeuthen (seit 1992)
- Zahlen und Fakten
 - Jahresetat: 183 Millionen Euro (90% Bund, 10% Hamburg und Brandenburg)
 - Mitarbeiter: ca. 1900 (davon ca. 600 Wissenschaftler), ca. 100 junge Menschen in Berufsausbildung
- Forschungsschwerpunkte:
 - Teilchenbeschleuniger
 - Forschung mit Photonen
 - Elementarteilchenphysik

Wer bin ich?

- Abitur 1994 (Lippstadt in Westfalen)
- technische universität dortmund **HERA**

R

- Diplomstudium Physik (Dortmund, 1995 - 2001)
- **Promotion Physik (Dortmund und** Siegen, 2001–2005)
- **Diplom- und Doktorarbeit beim** HERA-B-Experiment (DESY)

Wer bin ich?

- Abitur 1994 (Lippstadt in Westfalen)
- technische universität dortmund

R

- Diplomstudium Physik (Dortmund, 1995–2001)
- Promotion Physik (Dortmund und Siegen, 2001–2005)
- Diplom- und Doktorarbeit beim HERA-B-Experiment (DESY)
- Postdoc (Rochester und Yale, 2005–2008)
- Forschung am CDF-Experiment (Fermilab, bei Chicago)

Wer bin ich?

- Abitur 1994 (Lippstadt in Westfalen)
- technische universität dortmund

DESY

OW BO

- Diplomstudium Physik (Dortmund, 1995–2001)
- Promotion Physik (Dortmund und Siegen, 2001–2005)
- Diplom- und Doktorarbeit beim HERA-B-Experiment (DESY)
- Postdoc (Rochester und Yale, 2005–2008)
- Forschung am CDF-Experiment (Fermilab, bei Chicago)

Nachwuchsgruppenleiter bei DESY, Lehre HU Berlin (seit 2008)

Forschung am ATLAS-Experiment

Teilchenphysik: was wir wissen und was wir nicht wissen

Fr	iedrich-Gymnasium Luckenwald	e, 16.02.2009, U. Husemanı	n: Urknall im Labor – Teilch	enphysik am LHC 5	

Warum falle ich nach unten, wenn ich von der Mauer springe?

> Weil du von der Erde angezogen wirst.

Faszination Teilchenphysik

- Elementarteilchenphysik grundlegende Fragen an die Natur:
 - Was sind die fundamentalen Bausteine der Materie?
 - Welche Kräfte wirken zwischen den fundamentalen Bausteinen?
- Technische Herausforderungen:
 - Nachweis der fundamentalen Bausteine mit "Teilchendetektoren" – riesige Maschinen mit Mikrometer-Präzision
 - Verarbeitung der Datenflut
- Internationale Zusammenarbeit:
 - Institute aus ca. 40 Nationen
 - Tausende Kolleginnen und Kollegen aus aller Welt

Urknall im Labor?

"Urknall im Labor" heißt:

- LHC soll Erkenntnisse bringen über Entwicklung des frühen Universums
 → enger Zusammenhang Teilchenphysik – Kosmologie
- LHC: Energien (=Temperaturen) wie weniger als 10⁻¹⁰ Sekunden nach dem Urknall
- Kontrollierte Bedingungen: Teilchenkollisionen inmitten empfindlicher Detektoren
- "Urknall im Labor" heißt nicht:
 - Künstliche Erzeugung eines neuen Urknalls usw.

Warum immer höhere Energien?

- Grundpfeiler der Teilchenphysik:
 - Spezielle Relativitätstheorie (A. Einstein)
 - Quantenmechanik
 (E. Schrödinger, W. Heisenberg, …)
- Relativitätstheorie: $E = mc^2$
 - Masse ist eine Form von Energie
 - Mehr Energie → Produktion schwererer Teilchen
- Quantenmechanik: $\Delta x \cdot \Delta p \geq \frac{h}{2}$
 - Heisenberg'sche Unschärferelation:
 Ort (Δx) und Impuls (Δp) nicht gleichzeitig beliebig genau bekannt
 - Größerer Impulsübertrag
 Auflösung kleinerer Strukturen

Größenordnungen

Fundamentale Teilchen und Kräfte

- Teilchen im "Standardmodell der Teilchenphysik"
 - 12 Elementarteilchen, jedes mit Antiteilchen
 - 6 Quarks und 6 Leptonen
 - Anordnung in 3 Familien mit unterschiedlichen Massen
- Kräfte im Standardmodell

[http://www.particlephysics.ac.uk/]

Fundamentale Teilchen und Kräfte

- Teilchen im "Standardmodell der Teilchenphysik"
 - 12 Elementarteilchen, jedes mit Antiteilchen
 - 6 Quarks und 6 Leptonen
 - Anordnung in 3 Familien mit unterschiedlichen Massen
- Kräfte im Standardmodell

[http://www.particlephysics.ac.uk/]

Offene Fragen 2009: Das Higgs-Teilchen

Die Massenfrage:

- Warum unterscheiden sich die Massen der Elementarteilchen in den drei Familien?
- Warum haben die Elementarteilchen überhaupt Masse?
- Lösung: das "Higgs-Teilchen"
 - Postuliert von britischem Physiker
 Peter Higgs (und anderen) im Jahr 1964
 - Funktion: Higgs-Teilchen "gibt" allen Elementarteilchen Masse (die Masse zusammengesetzter Teilchen ist komplizierter!)
 - Fieberhafte Suche, aber noch nicht experimentell nachgewiesen

Wie Teilchen Masse bekommen:

Gäste bei einer Party (= Higgs-Feld)

Wie Teilchen Masse bekommen:

Gäste bei einer Party (= Higgs-Feld)

Prominenter betritt den Raum (= Teilchen)

Wie Teilchen Masse bekommen:

Gäste bei einer Party (= Higgs-Feld)

Prominenter betritt den Raum (= Teilchen)

Prominenter kommt schwer voran (Trägheit = Masse)

Wie Teilchen Masse bekommen:

Gäste bei einer Party (= Higgs-Feld)

Prominenter betritt den Raum (= Teilchen)

Prominenter kommt schwer voran (Trägheit = Masse)

Wie das Higgs-Teilchen Masse bekommt:

Jemand streut ein Gerücht (= Anregung des Higgs-Felds)

Gerücht verbreitet sich (= massives Higgs-Teilchen)

[D. Miller]

Standardmodell der Kosmologie

 Seit ca. 10 Jahren: konsistentes Modell von der Entwicklung des Universums seit dem Urknall → "Standardmodell der Kosmologie"

• Passen Teilchenphysik und Kosmologie zusammen?

Dunkle Materie und Dunkle Energie

Dunkle Materie und Dunkle Energie

Supersymmetrie?

- Das Standardmodells der Teilchenphysik erklärt nicht alles:
 - Teilchen des Standardmodells: nur 4% der Energiedichte im Universum
 - Standardmodell funktioniert nicht gut f
 ür Energien oberhalb 1 TeV
- Lösungsidee: Supersymmetrie ("SUSY")
 - Zu jeden Teilchen im Standardmodell gibt es ein (schwereres) Spiegelteilchen
 - Dunkle Materie = leichteste Spiegelteilchen (häufig: "Neutralino")

Extra-Dimensionen?

- Noch ein Problem: keine Gravitation im Standardmodell
 - Gravitation funktioniert nicht "einfach so" als Quantentheorie
 - Wasserstoffatom: Gravitationskraft zwischen Proton und Elektron 10⁴² mal schwächer als elektromagnetische Kraft → "Hierarchieproblem"
- Spekulative Lösungsidee: zusätzliche Raumdimensionen
 - Gravitation breitet sich in mehr als 3 Raumdimensionen aus

L. Randall

Planck-Brane: Gravitation stark

Bulk

TeV-Brane: SM-Teilchen Gravitation schwach

R. Sundrum

Schwarze Löcher am LHC?

• Theorien mit Extra-Dimensionen:

- Gravitation in Extra-Dimensionen stark genug zur Erzeugung mikroskopischer schwarzer Löcher am LHC (≠ Einstein'sches astronomisches schwarzes Loch)
- Zerfall in < 10⁻²⁵ Sekunden durch Hawking-Strahlung → spektakuläre Signatur im Detektor
- (Wilde) Spekulation: schwarzes Loch zerfällt nicht, sondern frisst Erde auf
- Der LHC ist sicher:
 - Kosmischer Strahlung: jede Sekunde Kollisionen äquivalent zu >10¹⁴ Jahren LHC-Betrieb
 - Keine Zerstörung von Sonnen oder Neutronensternen durch schwarze Löcher beobachtet

CERN und der Large Hadron Collider

CERN – Habe ich schonmal gehört...

CERN – Habe ich schonmal gehört…

CERN – Habe ich schonmal gehört…

CERN – where the web was born...

Tim Berners-Lee (1990)

Was ist CERN?

Genfer See

CERN = Europäisches Teilchenphysiklabor Weltweit größtes Labor für Teilchenphysik, gegründet 1954 Historischer Name: "Conseil Européen pour la Recherche Nucléaire" 2500 Angestellte, fast 10000 Gäste (85 Nationalitäten)

LHC – der Large Hadron Collider

LHC – der Large Hadron Collider

LHC-Beschleuniger: Proton-Proton- und Blei-Blei-Kollisionen

LHC – der Large Hadron Collider

CMS-Experiment:

Vielzweckexperiment

LHC-Beschleuniger: Proton-Proton- und Blei-Blei-Kollisionen

Friedrich-Gymnasium Luckenwalde, 16.02.2009, U. Husemann: Urkn

ATLAS-Experiment: Vielzweckexperiment

LHC – der Large Hadron Collider

CMS-Experiment:

Vielzweckexperiment

LHC-Beschleuniger: Proton-Proton- und Blei-Blei-Kollisionen

ALICE-Experiment: Schwerionenphysik

Luckenwalde, 16.02.2009, U. Husemann: Urkn

ATLAS-Experiment: Vielzweckexperiment

Prinzip des Teilchenbeschleunigers

DES

Beschleunigung: Hohlraumresonatoren

Beschleunigung: Hohlraumresonatoren

Ablenkung: Dipolmagnete

Ablenkung: Dipolmagnete

LHC: Zahlen und Fakten

- Magnete halten Strahl auf Kreisbahn:
 - 1232 supraleitende Dipolmagnete (8.33 T)
 - Heliumkühlung, Betriebstemperatur: 1.9 K
- Strahlparameter:
 - Ca. 2800 Pakete mit jeweils ca. 100 Milliarden Protonen
 - Gespeicherte Strahlenergie: 700 MJ (kinetische Energie ≈ TGV mit 200 km/h)
- Wechselwirkungsrate in ATLAS & CMS
 - 40 Millionen mal 25 Proton-Proton-Kollisionen pro Sekunde
 → 1 Milliarde Ereignisse pro Sekunde
 - > 99.9999% dieser Ereignisse sind "uninteressant" (bekannte Teilchen)
 - Im Schnitt: ein Higgs-Boson in jedem 10.000.000.000sten Ereignis

Experimente am LHC

Anforderungen an die Detektoren

- Vollständige Charakterisierung der Kollision: Ort, Impuls, Energie, Art aller Teilchen → verschiedene Detektortypen, zwiebelschalenartig um Kollisionspunkt
- Neue Teilchen zerfallen sehr schnell
 - Nachweis von Zerfallsprodukten: geladene Leptonen (e,μ,τ), Photonen, Pionen, Protonen, Neutronen, Neutrinos
 - Keine freien Quarks → Nachweis als Jets = Bündel von Teilchen
 - Nachweis aller Zerfallsprodukte
 möglichst hermetischer Detektor
- Neue Teilchen werden selten erzeugt → hohe Kollisionsraten → schnelle Auslese

Anforderungen an die Detektoren

- Vollständige Charakterisierung der Kollision: Ort, Impuls, Energie, Art aller Teilchen → verschiedene Detektortypen, zwiebelschalenartig um Kollisionspunkt
- Neue Teilchen zerfallen sehr schnell
 - Nachweis von Zerfallsprodukten: geladene Leptonen (e,μ,τ), Photonen, Pionen, Protonen, Neutronen, Neutrinos
 - Keine freien Quarks → Nachweis als Jets = Bündel von Teilchen
 - Nachweis aller Zerfallsprodukte
 möglichst hermetischer Detektor
- Neue Teilchen werden selten erzeugt → hohe Kollisionsraten → schnelle Auslese

Teilchennachweis

Flug zum ATLAS-Experiment

[ATLAS]

Flug zum ATLAS-Experiment

[ATLAS]

ATLAS-Fakten:

- ***** 45 m lang, 25 m hoch
- ***** Gewicht: 7000 Tonnen
- * 100 Millionen Elektronikkanäle

ATLAS-Fakten:

- ***** 45 m lang, 25 m hoch
- ***** Gewicht: 7000 Tonnen
- * 100 Millionen Elektronikkanäle

Friedrich-Gymnasium Luckenwalde, 16.02.2009, U. Husemann: Urknall im Labor – Teilchenphysik am LHC 31

Spurdetektoren

Zusammenbau des ATLAS-Detektors

CMS – Compact Muon Solenoid

ALICE – Schwerionen & Ursuppe

*

*

LHCb – Symmetrie Materie/Antimaterie

Teilchennachweis

Impulsmessung

- Geladene Teilchen werden von Magnetfeldern abgelenkt
- Lorentzkraft als Zentripetalkraft: $e \vec{v} \times \vec{B} = \frac{mv^2}{r} \cdot \frac{\vec{r}}{r}$
- Typische Magnete in Collider-Detektoren
 - Solenoidmagnet (häufig supraleitend) mit Rückflussjoch
 - Ausnahme: LHCb → Dipolmagnet
- Homogenes Magnetfeld: helikale (= schraubenlinienförmige) Bewegung
 - Senkrecht zu Feldlinien: Kreisbahn
 - Parallel zu Feldlinien: gleichförmig-geradlinig
- Impuls senkrecht zu *B* aus Krümmungsradius der Teilchenspur:
 p_T[GeV/c] = 0.3 *B*[T] · r[m]

Spur- und Vertexrekonstruktion

- Mehrlagiger Spurdetektor
- Elektrische Signal in jeder Detektorlage
 → Spurpunkte
- Spuranpassung:
 - Mustererkennung: liegen Spurpunkte auf gemeinsamer Helixbahn?
 - Spurfit: Anpassung der der Helixparameter
- Vertexanpassung: zeigen Spuren auf gemeinsamen Ursprungsort ("Vertex")?

Simulierter Zerfall eines supersymmetrischen Teilchens (Seitenansicht)

Spur- und Vertexrekonstruktion

Dotierte Halbleiter

- Heutige Spurdetektoren: Halbleitertechnologie
- Typische Halbleiter (z.B. Silizium, GaAs)
 - Kristallgitter mit 4 Valenzelektronen
 - Zwei Arten von Ladungsträgern:
 - Negativ freie Elektronen
 - Positiv Elektronen wandern zwischen freien Positionen im Kristallgitter ("Löcher")
- Veränderung der Eigenschaften durch Dotierung:
 - Füge Atome mit 5 Valenzelektronen hinzu (P, As, Sb): "n-dotiert" (zusätzliche Elektronen)
 - Füge Atome mit 3 Valenzelektronen hinzu (B, Al, Ga, In): "p-dotiert" (zusätzliche Löcher)
- Tieferes Verständnis: Bändermodell

[hyperphysics.phy-astr.gsu.edu]

pn-Übergang und Verarmungszone

[hyperphysics.phy-astr.gsu.edu]

- Übergang zwischen *p*-dotiertem und *n*-dotiertem Halbleiter
 - Ladungsträger diffundieren zur anderen Seite und rekombinieren
 - Ausbildung einer nicht-leitenden Schicht ("Verarmungszone")

(Umgekehrte) Bias-Spannung

- Entfernung von Ladungsträgern
 → Vergrößerung der Verarmungszone
- Durchgang geladene Teilchen: neue Ladungsträger durch Ionisierung
 → elektrisches Signal

Funktionsprinzip: Siliziumdetektoren

Beispiel: CMS-Spurdetektor

- CMS-Experiment: gesamter Spurdetektor aus Silizium
 - Mehr als 200 m² Detektorfläche, mehr als 60 Millionen Auslesekanäle
 - Innere Lagen: Pixeldetektoren
 → hohe Auflösung
 - Äußere Lagen: Streifendetektoren
 → große Abdeckung

Kalorimeter

- Historisch: Kalorimeter = "Wärmemesser"
- Teilchenphysik: Kalorimeter = "Energiemesser"
- Idee: messe Teilchenenergie mittels (teilweiser) Absorption in schwerem Detektormaterial

"Look, our new total absorption calorimeter!"

Teilchenschauer

- Teilchen wechselwirken mit Detektormaterial im Kalorimeter: Schauer neuer Teilchen
- Welchselwirkungen in Materie: stark unterschiedlich zwischen Elektronen/ Photonen und Hadronen
 - Elektromagnetische Kalorimeter
 - Hadronische Kalorimeter
- Gesamtlänge aller Spuren im Schauer proportional zur Energie des Primärteilchens
- Teilchenidentifikation möglich durch Analyse der Schauerform

Arten von Kalorimetern

Lab 27 PH-CMA CERN

- Homogene Kalorimeter: Schauernachweis in gesamtem Detektorvolumen
 - Kristalle: CsI(TI), PbWO₄, …
 → durchgehendes Teilchen erzeugt Lichtblitz ("Szintillation")
 - Flüssige Edelgase: Argon (LAr), Krypton (LKr) → Ionisation
- Sampling-Kalorimeter: Absorbermaterial und sensitives Material wechseln sich ab
 - Metall–Szintillator: Blei, Eisen, Uran + Plastikszintillator
 - Metall–Flüssige Edelgase: Blei, Kupfer, Messing + LAr

Segment des Flüssigargon-Kalorimeters (ATLAS)

Flüssigargon-Kalorimeter in ATLAS

- Flüssigargon-Kalorimeter:
 - Durchgehendes Teilchen ionisiert hochreines flüssiges Argon
 - Erzeugte Ionen driften zu Elektroden (Spannung: ca. 2000 V), erzeugen elektrisches Signal
 - Betriebstemperatur: ca. 80 K (flüssiger Stickstoff)
- Elektromagnetisches Kalorimeter bei ATLAS
 - Absorption elektromagnetischer Schauer in Bleiplatten
 - Besonderheit Akkordeonstruktur: schnelle Auslese, keine Lücken in Detektorabdeckung

Online-Datenverarbeitung

- Herausforderung Datenrate:
 1 Milliarde Kollisionen pro Sekunde
 - Datenrate ca. 1 TB/s → mit heutiger Technologie nicht verarbeitbar
 - Zum Glück: >99.999999% aller Kollisionen "uninteressant" → schnelle Selektion "interessanter" Kollisionen

Uninteressantes Ereignis

Online-Datenverarbeitung

- Herausforderung Datenrate:
 1 Milliarde Kollisionen pro Sekunde
 - Datenrate ca. 1 TB/s → mit heutiger Technologie nicht verarbeitbar
 - Zum Glück: >99.999999% aller Kollisionen "uninteressant" → schnelle Selektion "interessanter" Kollisionen
- Lösung: mehrstufige Online-Datenfilterung ("Trigger"):
 - Einfache Signale, geringer Auflösung,
 z. B. ein hochenergetisches Myon
 → spezielle Trigger-Hardware
 - Größere Auflösung in Teilen des Detektors, z. B. Kegel um Myon → Software auf Computerfarm
 - 3. Information von Gesamtdetektor \rightarrow Software auf Computerfarm

Grid-Computing

- Herausforderungen:
 - Datenrate: ca. 15 PByte/Jahr von allen LHC-Experimenten (CD-Stapel von 20 km Höhe)
 - Prozessierung (Rekonstruktion, Simulation etc.): Rechenleistung von 100.000 Computern
- Lösung: Grid-Computing
 - Rechenleistung und Speicherplatz weltweit verteilt
 - Geschickte Aufteilung der Ressourcen: Bringe die Anwendung zu den Daten
 - Name "Grid": Analogie zu Stromnetz ("power grid")
 - LHC: Mehrstufiger ("Multi-Tier") Zugang

Grid-Computing

- Herausforderungen:
 - Datenrate: ca. 15 PByte/Jahr von allen LHC-Experimenten (CD-Stapel von 20 km Höhe)
 - Prozessierung (Rekonstruktion, Simulation etc.): Rechenleistung von 100.000 Computern
- Lösung: Grid-Computing
 - Rechenleistung und Speicherplatz weltweit verteilt
 - Geschickte Aufteilung der Ressourcen: Bringe die Anwendung zu den Daten
 - Name "Grid": Analogie zu Stromnetz ("power grid")
 - LHC: Mehrstufiger ("Multi-Tier") Zugang

10.09.2008: Erster Strahl

10.09.2008: Erster Strahl

19.09.2008: Verfrühte Winterpause

Was ist passiert?

- LHC-Magnete sind mit Spleißen elektrisch verbunden (verschweißt)
- Eine Verbindung hatte winzigen elektrischen Widerstand (nΩ): Lichtbogen → Loch in Heliumsystem
- Druckwelle im Heliumsystem beschädigt weitere Magnete
- Und was jetzt?
 - Bessere Diagnostik und verbessertes Überdrucksystem
 - Reparaturen von 53 Magnete an Oberfläche → im vollen Gange
 - Erster Strahl: Sommer 2009

[CERN]

Menschen am LHC

Large Hadron Rap: 4,3 Mio Hits bei YouTube!

Faszination Internationalität

Faszination Internationalität

Berliner Studierende bei ATLAS

- Studierende bei ATLAS: nur eine/r unter 2500?
 - Teil eines der größten Forschungsprojekte der Menschheit
 - Komplexes System,
 Verantwortung f
 ür Teilgebiet
 → Sichtbarkeit
- Breite Ausbildung:
 - Hardware: Planung, Bau, Tests…
 - Software: Datenbanken, objektorientierte
 Programmierung,
 Simulationen, statistische
 Methoden...

Berufsaussichten: Teilchenphysik

Hervorragende Berufsaussichten!

- Absolventinnen und Absolventen begehrt in Industrie und Forschung
- Arbeitslosigkeit <2%, vgl. Durchschnitt 2007: 8.5%)
- Schlüsselqualifikationen auch in der Industrie begehrt:
 - Problemlösung
 - Team- und Kommunikationsfähigkeit
 - Konstruktive Konkurrenzsituation
 - Internationalität/ Fremdsprachen
 - EDV-Kenntnisse

Arbeitsmarkt für Physiker/innen 2008

Tätigkeit: Hier arbeiten Physiker/innen³

Bedarf: Hier werden Physiker/innen gesucht⁴ 20,8 % Sonstige Softwareentwicklung 2% Öffentliche Verwaltung 5% Forschung und Entwicklung 27,4% Sozial- und Gesundheitswesen 2% Hochschule und Architektur- und Forschungseinrichtungen Ingenieurbüros 2,3% 21,3 % (Stellen meist befristet) Unternehmensberatungen 1,1% Personaldienstleistungen, 7,9 % Zeitarbeit 7,6 % Messtechnik und Optik Produktion elektronischer 2,6% Bauelemente

Durchschnittliches Jahreseinkommen^{3, 5, 6}

[DPG, PHYSIKonkret 12/08]

Quellen:

- Hochschul-Informations-System GmbH (HIS), "Der Absolventenjahrgang 2001/2002 fünf Jahre nach dem Hochschulabschluss" (2008).
- 4) Bundesagentur für Arbeit.
- 5) Kienbaum Management Consultants GmbH, Gehaltsumfrage 2008.
- 6) HIS, "Zwischen Hochschule und Arbeitsmarkt: Eine Befragung der Hochschulabsolventinnen und Hochschulabsolventen des Prüfungsjahres 2001" (2004).

Zusammenfassung

WELT MASCHINE

DIE KLEINSTEN TEILCHEN UND GRÖSSTEN RÄTSEL DES UNIVERSUMS

AUSSTELLUNG IM U-BAHNHOF BUNDESTAG, BERLIN

15.10. - 16.11.2008 • MO - SO 10 - 19 UHR • DO 10 - 22 UHR • WWW.DIEWELTMASCHINE.DE

- Teilchenphysik und Kosmologie: viele Antworten, aber noch mehr Fragen:
 - Warum ist die Gravitation so schwach?
 - Woraus besteht Dunkle Materie?
 - Warum gibt es im Universum Materie, aber fast keine Antimaterie?
- LHC: Anbruch einer neuen Ära der Teilchenphysik
 - Unerreichte Kollisionsenergien
 - Teilchendetektoren: präzise
 Vermessung der Kollisionen
 - Herbst 2009: erste Kollisionen

Impulsmessung mit Siliziumdetektoren

- Idee der Impulsmessung:
 - Bestimme Spuren geladener Teilchen aus Spurpunkten
 - Ablenkung in Magnetfeld umgekehrt proportional zu Impuls des Teilchens (Masse × Geschwindigkeit)

Impulsmessung mit Siliziumdetektoren

Front-End-Elektronik

DESY

- Detektoren liefern in der Regel kleine analoge Signal
 Vorverarbeitung nah am Detektor ("Front-End")
- ASD (engl.: amplifier-shaper-discriminator)

ADC (engl.: analog-to-digital converter)

- Datenübertragung häufig mit optischen Fasern
 - Kleine Dämpfung über typische Abstände (50–100 m)
 - Keine Beeinflussung durch elektromagnetische Störungen

Online-Datenverarbeitung

- Herausforderung Datenrate:
 - "Nadel im Heuhaufen": jede Sekunde 1 Milliarde Kollisionen, aber nur ca. 100 interessante Ereignisse
 - Überschlagsrechnung: 10⁹ Kollisionen/s × 10⁶ aktive Kanäle
 = 1 TB/s → mit heutiger Technologie nicht speicherbar

Online-Datenverarbeitung

• Herausforderung Datenrate:

- "Nadel im Heuhaufen": jede Sekunde 1 Milliarde Kollisionen, aber nur ca. 100 interessante Ereignisse
- Überschlagsrechnung: 10⁹ Kollisionen/s × 10⁶ aktive Kanäle
 = 1 TB/s → mit heutiger Technologie nicht speicherbar
- Lösung: mehrstufige Datenfilterung ("Trigger"):
- Einfache Signale, geringer Auflösung,
 z. B. ein hochenergetisches Myon
 → spezielle Trigger-Hardware
- Größere Auflösung in Teilen des Detektors, z. B. Kegel um Myon → Software, Computerfarm
- Information von Gesamtdetektor → Software, Computerfarm

Grid-Computing

- Herausforderungen:
 - Datenrate: ca. 15 PByte/Jahr von allen LHC-Experimenten (CD-Stapel von 20 km Höhe)
 - Prozessierung (Rekonstruktion, Simulation etc.): Rechenleistung von 100.000 Computern
- Lösung: Grid-Computing
 - Rechenleistung und Speicherplatz weltweit verteilt
 - Geschickte Aufteilung der Ressourcen: Bringe die Anwendung zu den Daten
 - Name "Grid": Analogie zu Stromnetz ("power grid")
 - LHC: Mehrstufiger ("Multi-Tier") Zugang

Grid-Computing

- Herausforderungen:
 - Datenrate: ca. 15 PByte/Jahr von allen LHC-Experimenten (CD-Stapel von 20 km Höhe)
 - Prozessierung (Rekonstruktion, Simulation etc.): Rechenleistung von 100.000 Computern
- Lösung: Grid-Computing
 - Rechenleistung und Speicherplatz weltweit verteilt
 - Geschickte Aufteilung der Ressourcen: Bringe die Anwendung zu den Daten
 - Name "Grid": Analogie zu Stromnetz ("power grid")
 - LHC: Mehrstufiger ("Multi-Tier") Zugang

Kalibration und Alignment

- Kalibration: Sicherstellung gleichmäßiger Detektorantwort
 - Herausforderung 1: Nicht jeder Auslesekanal eines Subdetektors zeigt die gleiche Antwort bei Teilchendurchgang
 - Herausforderung 2: Antwort kann zeitlich variabel sein
- Alignment: genaue Ausrichtung der Detektoren
 - Herausforderung: riesige Detektoren (z.B. ATLAS: 25 × 25 × 45 m³), aber Spurauflösung von einigen 10 µm
 - Grobe Ausrichtung: Präzisionsmechanik bei Konstruktion, Vermessungstechnik
 - Feinausrichtung mit Daten von Teilchenspuren

Kalibration und Alignment

- Kalibration: Sicherstellung gleichmäßiger Detektorantwort
 - Herausforderung 1: Nicht jeder Auslesekanal eines Subdetektors zeigt die gleiche Antwort bei Teilchendurchgang
 - Herausforderung 2: Antwort kann zeitlich variabel sein
- Alignment: genaue Ausrichtung der Detektoren
 - Herausforderung: riesige Detektoren (z.B. ATLAS: 25 × 25 × 45 m³), aber Spurauflösung von einigen 10 µm
 - Grobe Ausrichtung: Präzisionsmechanik bei Konstruktion, Vermessungstechnik
 - Feinausrichtung mit Daten von Teilchenspuren

Kalibration und Alignment

- Kalibration: Sicherstellung gleichmäßiger Detektorantwort
 - Herausforderung 1: Nicht jeder Auslesekanal eines Subdetektors zeigt die gleiche Antwort bei Teilchendurchgang
 - Herausforderung 2: Antwort kann zeitlich variabel sein
- Alignment: genaue Ausrichtung der Detektoren
 - Herausforderung: riesige Detektoren (z.B. ATLAS: 25 × 25 × 45 m³), aber Spurauflösung von einigen 10 µm
 - Grobe Ausrichtung: Präzisionsmechanik bei Konstruktion, Vermessungstechnik
 - Feinausrichtung mit Daten von Teilchenspuren

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

MC-Simulation in der Teilchenphysik

Ereignisgenerator simuliere physikalischen Prozess (Quantenmechanik: Wahrscheinlichkeiten)

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

MC-Simulation in der Teilchenphysik

Ereignisgenerator simuliere physikalischen Prozess (Quantenmechanik: Wahrscheinlichkeiten)

Detektorsimulation: simuliere Wechselwirkung mit Detektormaterial

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

MC-Simulation in der Teilchenphysik

Ereignisgenerator simuliere physikalischen Prozess (Quantenmechanik: Wahrscheinlichkeiten)

Detektorsimulation: simuliere Wechselwirkung mit Detektormaterial

Digitalisierung: übersetze Wechselwirkungen im Detektor in realistische Signale

 Monte-Carlo (MC-) Simulationen: numerische Methoden, die auf Zufallszahlen basieren

> "It's called 'Monte Carlo' because you're playing on someone else's money." [B. Jacobsen, Berkeley]

Beispiel: MC-Integration

Integral proportional zur Zahl der zufälligen Punkte unter der Kurve

MC-Simulation in der Teilchenphysik

Ereignisgenerator simuliere physikalischen Prozess (Quantenmechanik: Wahrscheinlichkeiten)

Detektorsimulation: simuliere Wechselwirkung mit Detektormaterial

Digitalisierung: übersetze Wechselwirkungen im Detektor in realistische Signale

Rekonstruktion/Analyse: wie für reale Daten

Datenanalyse

- Objektorientierte Datenanalyse mit ROOT (<u>http://root.cern.ch</u>)
- Analyseschritte (schematisch):
 - Trennung der "interessanten" Kollisionen (z.B. Higgs-Kandidat) von "uninteresanten" Kollisionen: Selektionsschnitte, Anpassungen ("Fits"), neuronale Netze, …
 - MC-Simulationen, Vergleich mit theoretischen Vorhersagen
- Präsentation der Ergebnisse, eingehende Prüfung durch Kollaboration
- Vorstellung auf Konferenzen
- Veröffentlichung in internationalen Fachzeitschriften

🥖 🖯 🖯	X TreeV	liewer	
<u>F</u> ile <u>E</u> dit <u>R</u> un <u>O</u> ptions			<u>H</u> elp
Command	Option	Histogram htemp 🗖 Hist 🗖	Scan 🔽 Rec
Current Folder TreeList Function	Current Tree : TopT X: -empty- Z: -empty- C: -empty- Scan box E() -empty- E() -empty- E(Fiel EC) -empty- evt run Number evt.eventNumber evt.eventNumber evt.cosmicOOTLow evt.CosmicOOTLow evt.bunchNum159 evt.bunchNum36 evt.gliveTotalLumi evt.gliveTotalLumi evt.scalerTotalLumi evt.scalerTotalLumi evt.scalerTotalLumi	 evt.bun evt.gliw evt.cres summar
vist OList	First entry : 0 Last entry : 140	60 н н н н	▼ RESE ⁻¹

Datenanalyse

- Objektorientierte Datenanalyse mit ROOT (<u>http://root.cern.ch</u>)
- Analyseschritte (schematisch):
 - Trennung der "interessanten" Kollisionen (z.B. Higgs-Kandidat) von "uninteresanten" Kollisionen: Selektionsschnitte, Anpassungen ("Fits"), neuronale Netze, …
 - MC-Simulationen, Vergleich mit theoretischen Vorhersagen
- Präsentation der Ergebnisse, eingehende Prüfung durch Kollaboration
- Vorstellung auf Konferenzen
- Veröffentlichung in internationalen Fachzeitschriften

Datenanalyse

- Objektorientierte Datenanalyse mit ROOT (<u>http://root.cern.ch</u>)
- Analyseschritte (schematisch):
 - Trennung der "interessanten" Kollisionen (z.B. Higgs-Kandidat) von "uninteresanten" Kollisionen: Selektionsschnitte, Anpassungen ("Fits"), neuronale Netze, …
 - MC-Simulationen, Vergleich mit theoretischen Vorhersagen
- Präsentation der Ergebnisse, eingehende Prüfung durch Kollaboration
- Vorstellung auf Konferenzen
- Veröffentlichung in internationalen Fachzeitschriften

