

Siliziumdetektoren: Herzstück moderne Teilchenphysikexperimente

Schülervorlesung 10. April 2014

Ulrich Husemann Institut für Experimentelle Kernphysik

www.kit.edu

- Motivation: Teilchendetektoren am Large Hadron Collider
- Elektronen als Quantenobjekte
- Elektronen in Festkörpern
- Dotierte Halbleiter
- Spurdetektoren aus Halbleitermaterialien

Teilchendetektoren am Large Hadron Collider

Was ist Teilchenphysik?

- Wir haben physikalische Theorien vom allerkleinsten und vom allergrößten
 - Standardmodell der Teilchenphysik: 6 Quarks und 6 Leptonen
 - Standardmodell der Kosmologie
- Physik heißt experimentieren
 - Experimente mit und ohne Teilchenbeschleuniger
 - Höchste Energien und/oder höchste Präzision

Elementarteilchen im Standardmodell der Teilchenphysik

Nachweis von Elementarteilchen

Hunts Needle in a Haystack

How LONG does it take to find a needle in a haystack? Jim Moran, Washington, D. C., publicity man, recently dropped a needle into a convenient pile of hay, hopped in after it, and began an intensive search for (a) some publicity and (b) the needle. Having found the former, Moran abandoned the needle hunt.

- Erzeugung und Nachweis von Elementarteilchen in Kollisionen bekannter Elementarteilchen "im Labor"
 - Interessante Elementarteilchen: oft sehr schwer und sehr kurzlebig
 - Prozesse mit interessanten Elementarteilchen sehr selten
 - Lösung: Experimente an Teilchenbeschleunigern
 - Beschleuniger: höchste mögliche Energie (benutze E = mc²) und Kollisionsrate
 - Experimente: effizienter Filter f
 ür Zerfallsprodukte der Teilchen

Prinzip des Teilchenbeschleunigers

LHC-Beschleuniger: Proton-Proton- und Blei-Blei-Kollisionen

ALICE-Experiment: Schwerionenphysik

Siliziumdetektoren

LHCb-Experiment: Symmetrie Materie/Antimaterie

ATLAS-Experiment: Vielzweckexperiment

h Husemann e Kernphysik

Teilchennachweis

Ulrich Husemann Institut für Experimentelle Kernphysik

Geladene Teilchen in Materie

Semiklassisches Modell ("Bethe-Formel"): elektromagnetische Wechselwirkung der Teilchen mit Atomen

- Mittlerer Energieverlust pro Längeneinheit ("stopping power")
 - Niedrige Energien: Ionisation
 - Höhere Energien:
 Abstrahlung von
 Photonen

[[]Particle Data Group]

Der CMS-Detektor am LHC

Siliziumdetektoren

Messung von Ort und Impuls

Geladene Teilchen im Magnetfeld:

- Ablenkung durch Lorentzkraft (Dreifingerregel)
- CMS: homogenes Magnetfeld in Strahlrichtung

 → schraubenlinienförmige Bahn ("Helix")
- Spurdetektoren am LHC
 - Mehrere Lagen von Ortsdetektoren
 - Anpassung einer Helixbahn an Spurpunkte
- Messungen mit Spurdetektoren
 - Krümmung der Teilchenbahnen ("Spuren") → Impulsmessung
 - Zeigen ≥2 Spuren auf gemeinsamen Ursprungsort ("Vertex")?

Kurze Zusammenfassung

Forschung mit Elementarteilchen an Beschleunigern

- Strahlenergie umgesetzt in Produktion von Elementarteilchen (E = mc²)
- Schwere Elementarteilchen sehr kurzlebig → Nachweis der Zerfallsprodukte in aufwändigen Detektoren
- Detektoren:
 - Messung von Energie, Impuls und Teilchenart der Zerfallsprodukte
 - Zwiebelschalenartiger Aufbau: Spurdetektor Kalorimeter Myon-Detektor
- Funktionsprinzip von Spurdetektoren
 - Geladene Teilchen: Energieverlust in Materie primär durch Ionisation
 - Rekonstruktion von Spurpunkten mit Ortsdetektoren → Impuls durch Krümmung der Teilchenspur

Elektronen als Quantenobjekte

Aufbruch in die Quantenwelt

- Objekte der Quantenwelt: "seltsame" Eigenschaften ohne klassische Entsprechung
 - Wellen- und Teilcheneigenschaften
 - Ununterscheidbarkeit von Quantenobjekten
- Grundlagen der Quantenmechanik
 - Jedem (System von) Teilchen ist eine Wellenfunktion ψ zugeordnet (komplexe Funktion von Ort und Zeit)
 - Gängigste physikalische Interpretation: Quadrat der Wellenfunktion |ψ|² = Aufenthaltswahrscheinlichkeit des Objekts
 - Schrödingergleichung = Gleichung, die Ausbreitung der Wellenfunktion beschreibt

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi$$

Gebundene Zustände

Stark vereinfachtes H-Termschema

- Quantenobjekte können untereinander wechselwirken

 → gebundene Zustände
- Beispiel Wasserstoffatom:
 - Elektron (Ladung –e) gebunden durch Coulombpotenzial des Protons (Ladung +e)
 - Lösung der Schrödingergleichung: Energien gebundener Zustände quantisiert → nur bestimmte Energieniveaus erlaubt

[Demtröder, Experimentalphysik 3, Springer 2010]

Eigenschaften von Elektronen

Elektronen nach heutigem Verständnis elementar
 punktförmige Elementarteilchen ohne Substruktur

- Ladung des Elektrons:
 - Ladungen treten in der Natur quantisiert auf

■ Elementarladung e \approx 1,6 × 10⁻¹⁹ C

 \rightarrow kleinste Ladungseinheit freier Teilchen in der Natur

Ladung des Elektrons: –e

Neue Quanteneigenschaft Spin: Elektron = Spin-1/2-Teilchen

- Formal wie Drehimpuls
- Elektronen: zwei mögliche Spinzustände relativ zu gegebener "Quantisierungsachse"

parallel ("spin up" = +1/2 ħ)

antiparallel ("spin down" = -1/2 ħ)

Quantisierungsachse

Das Pauli-Prinzip

Fermionen = Teilchen mit halbzahligem Spin (1/2 ħ, 3/2 ħ usw.), z. B. Elektronen

Pauli-Prinzip

- Zwei identische Fermionen können nicht gleichzeitig denselben Quantenzustand besetzen
- Physikalischer Grund: Symmetrie der Wellenfunktion ψ für Fermionen
- Fermionen in gebundenen Zuständen (z. B. Atome): sukzessives Auffüllen der erlaubten Energieniveaus

Enrico Fermi

Wolfgang Pauli

Fermi-Dirac-Verteilung

Temperatur am absoluten Nullpunkt (T = 0 K):

- Auffüllen der Energieniveaus nach Pauli-Prinzip
- Energie des höchsten belegten Niveaus bei T = 0 K: Fermienergie EF
- Äußere Anregungen (Licht, Wärme, …): Elektronen können Energieniveaus wechseln ("Quantensprung") → Energieverteilung:

Ulrich Husemann Institut für Experimentelle Kernphysik

Kurze Zusammenfassung

- Quantenobjekte: Beschreibung über Wellenfunktion, Quadrat der Wellenfunktion = Aufenthaltswahrscheinlichkeit
- Gebundene Zustände: nur bestimmte Energieniveaus erlaubt
- Elektronen:
 - Elementare Fermionen (Spin 1/2 ħ), punktförmig
 - Pauli-Prinzip: keine zwei Elektronen im exakt gleichen Zustand
 - Gebundene Elektronen: Auffüllen der Energieniveaus bis zur Fermienergie

Elektronen in Festkörpern

Ulrich Husemann Institut für Experimentelle Kernphysik

Kristalline Festkörper

- Kristallgitter: periodische Anordnung von Atomen
- Relevantes Beispiel: Silizium
 - Jedes Si-Atom: vier kovalente Bindungen an Nachbaratome → Tetraeder
 - Kristall als Würfel mit Kantenlänge a
 - Positionen der Si-Atome: Würfelkanten, Mittelpunkte der Würfelflächen → kubisch flächenzentriertes Gitter
 - Zu jedem Si-Atom: weiteres Si-Atom um 1/4 der Raumdiagonale verschoben

[Demtröder, Experimentalphysik 3, Springer 2010]

Elektronen in Kristallen

- Vollständige Beschreibung sehr kompliziert
 - Quantenmechanik: gemeinsame Wellenfunktion f
 ür alle Elektronen eines Quantensystems
 - Elektronen in Nähe der Atomkerne stark gebunden ("lokalisiert")
 - Weiter von Atomkernen entfernte Elektronen sehr schwach gebunden ("delokalisiert")
 - Schwingungen ("Phononen") Kristalle nicht starr \rightarrow quantisierte Schwingungen ("Phononen")
 - Endliche Ausdehnung von Kristallen → Randeffekte

Typisches Vorgehen: physikalisch sinnvolle Näherungsverfahren

Freies Elektronengas

Einfachster Ansatz: freies Elektronengas

- Jedes Elektron ist unabhängig
- Keine Wechselwirkung mit anderen Elektronen oder Atomrümpfen (z. B. durch Coulombkraft)
- Elektronen unterliegen Pauli-Prinzip: Energieniveaus unterhalb der Fermi-Energie gefüllt

Elektronen-Anzahldichte

Gute Näherung zur Beschreibung einiger Festkörpereigenschaften

- Elektrische Leitfähigkeit
- Teil der Wärmeleitfähigkeit (zusammen mit Phononen)
- Metallischer Glanz

Bändermodell

Verbesserter Ansatz: Bändermodell

- Wie bei Elektronengas: unabhängige Elektronen, keine Wechselwirkung mit anderen Elektronen
- Atomrümpfe auf Kristallgitter: periodisches Potenzial
- Konsequenz für erlaubte Energieniveaus der Elektronen
 - Sehr viele Elektronen: überlappende Energieniveaus → Energiebänder
 - Periodisches Potenzial: Reflexionen der Elektronenwellen
 - Resultat: stehende Elektronenwellen
 - → Bandlücken (= Lücken zwischen Energiebändern) möglich

Bändermodell und Leitfähigkeit

- Besetzung der Bänder nach Pauli-Prinzip
 - Höchstes vollständig gefülltes Energieband: Valenzband
 - Nächsthöheres Energieband: Leitungsband

Klassifikation: Isolatoren – Leiter

- Isolatoren: große Bandlücke E_g zwischen Valenzband und Leitungsband → thermische Anregung nicht ausreichend, um Elektronen in Leitungsband zu heben
- Leiter: Fermienergie E_F liegt in nicht vollständig gefülltem Band oder Valenzband und Leitungsband überlappen

Kurze Zusammenfassung

Modelle f ür Elektronen in Festkörpern

- Freies Elektronengas: nur Pauli-Prinzip
- Bändermodell: Elektronen in periodischem Potenzial
- Bändermodell:
 - Erlaubte Energieniveaus überlappen → Energiebänder
 - Valenz- und Leitungsband, ggf. Bandlücke
 - Erklärung für unterschiedliche Leitfähigkeit: Isolatoren Leiter Halbleiter

Dotierte Halbleiter

Halbleiter im Bändermodell

Halbleiter, z. B. Silizium

- Tiefe Temperaturen: sehr geringe Leitfähigkeit
- Anstieg der Leitfähigkeit mit Temperatur

Erklärung im Bändermodell

- Bandlücke Eg in Halbleitern kleiner als bei Isolatoren
- Einige Elektronen können durch thermische Anregung Bandlücke überwinden (vgl. Fermi-Dirac-Verteilung)

[Demtröder, Experimentalphysik 3, Springer 2010]

Ulrich Husemann Institut für Experimentelle Kernphysik

Elektronen und Löcher

Kristallgitter

Banddiagramm

■ Elektronen von Valenzband ins Leitungsband gehoben → "Loch" im Valenzband

Löcherleitung:

- Elektronen können Plätze im Valenzband wechseln
 Bewegung des Lochs
- Beschreibung als eigenständiger positiver Ladungsträger
- Konsequenz: in Halbleiter tragen zwei Arten von Ladungsträgern zur Leitfähigkeit bei, Elektronen und Löcher

Dotierte Halbleiter

p-Dotierung: zusätzliches Loch

- Dotierung = gezielte Veränderung der elektronischen Eigenschaften von Halbleitern durch Einbau von Fremdatomen in Kristallgitter
- Wichtigstes Beispiel: Silizium
 - 4 Valenzelektronen pro Atom
 - p-Dotierung: Atome mit 3 Valenzelektronen → zusätzliche Löcher: "Akzeptoren"
 - n-Dotierung: Atome mit 5 Valenzelektronen → zusätzliche Elektronen: "Donatoren"

n-Dotierung: zusätzliches Elektron

Dotierung im Bändermodell

n-Halbleiter:

- Zusätzliche Elektronen → neues Energieniveau dicht unterhalb des Leitungsbandes: "Donatorniveau"
- Fermienergie zwischen Donatorniveau und Leitungsband
- Thermische Anregung: Elektronen auf Donatorniveau gelangen leicht ins Leitungsband
- Majoritätsladungsträger: Elektronen

Dotierung im Bändermodell

p-Halbleiter:

- Zusätzliche Löcher → neues Energieniveau dicht oberhalb des Valenzbandes: "Akzeptorniveau"
- Fermienergie zwischen Valenzband und Akzeptorniveau
- Thermische Anregung: Elektronen aus Valenzband auf Akzeptorniveau gehoben → Löcher
- Majoritätsladungsträger: Löcher

pn-Übergang

- Zusammenfügen von p- und n-Halbleitern: interessante Physik
 - Starker Konzentrationsunterschied: viele Elektronen im n-Halbleiter, viele Löcher im p-Halbleiter
 - Diffusion der Elektronen in p-Halbleiter \rightarrow Rekombination mit Löchern
 - Diffusion der Löcher in n-Halbleiter → Rekombination mit Elektronen
 - Konsequenz: "Verarmungszone" ohne freie Ladungsträger

Konzentration von Ladungsträgern

pn-Übergang im Bändermodell

Bändermodell:

- Grenzfläche zwischen n- und p-Halbleiter: "verbogenes" Valenz- und Leitungsband, dieselbe Fermienergie E_F
- Diffusionsspannung U_D aufgrund unterschiedlicher Elektronen- und Löcherkonzentration in n- und p-Halbleiter

pn-Übergang als Diode

Biasspannung

- Positiver Pol am p-Halbleiter (engl.: "forward bias")
 - \rightarrow geringere Diffusionsspannung
 - \rightarrow schmalere Verarmungszone
- Negativer Pol am p-Halbleiter (engl.: "reverse bias")
 - \rightarrow größere Diffusionsspannung
 - \rightarrow breitere Verarmungszone
- Strom-Spannungs-Charakteristik
 - Forward bias: Strom steigt exponentiell mit Spannung bis zu Sättigung
 - Reverse bias: sehr kleiner Sperrstrom, Durchbruch

Kurze Zusammenfassung

Halbleiter:

- Leitfähigkeit: Isolatoren bei T = 0 K, Leitfähigkeit durch thermische Anregung (kleine Bandlücke)
- Ladungsträger: Elektronen (–) und Löcher (= fehlende Elektronen, +)
- Veränderte Halbleiter-Eigenschaften durch Dotierung:
 - **n**-Dotierung \rightarrow Donatoren, p-Dotierung \rightarrow Akzeptoren
 - pn-Übergang: Verarmungszone in Grenzschicht
 - Äußere negative Spannung \rightarrow Ausdehnung der Verarmungszone

Spurdetektoren aus Halbleitermaterialien

Siliziumdetektor: Funktionsweise

- Detektor: Halbleiterdiode mit pn-Übergang in Sperrrichtung
- Ionisierung des Detektormaterials: Elektron-/Loch-Paare

Ein paar Zahlen

Abschätzung der Signalstärke

- Signal proportional zu Dicke d der Verarmungszone, typisch d = 300 µm
- Energiedeposition geladenes Teilchen (vgl. Bethe-Formel): (dE/dx)_{min} = 1,6 MeV cm²/g
- Dichte von Silizium: ρ = 2,3 g/cm³
- Ionisationsenergie in Silizium: Eion = 3,6 eV pro Elektron-Loch-Paar
- Zahl der Elektronen:

$$N_e = \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{min}} \cdot \rho \cdot d \approx 30000$$

- Signale durch Ionisation klein
 - Freie Ladungsträger vorhanden → Signal überdeckt
 - Nur Verarmungszone als Detektor nutzbar

CMS-Pixeldetektormodul

Siliziumdetektoren bei CMS

CMS-Experiment: gesamter Spurdetektor aus Silizium

- Mehr als 200 m² Detektorfläche, mehr als 60 Milionen Auslesekanäle
- Innere Lagen: Pixeldetektoren → hohe Auflösung
- Außere Lagen: Streifendetektoren \rightarrow große Abdeckung

KIT: signifikante Beteiligung an Forschung und Entwicklung sowie Bau des CMS-Spurdetektors

Zusammenfassung & Ausblick

- Siliziumdetektoren: wichtiger Bestandteil moderner Teilchenphysikexperimente
- Physikalische Grundlagen:
 - Geladene Teilchen in Materie: Ionisation
 - Ionisation in Halbleitern: Elektronen und Löcher
 - pn-Übergang mit "reverse bias": Teilchendetektor
- Jetzt: Versuche mit Siliziumdetektoren (Robert Eber, Andreas Nürnberg)