Science@KIP-Seminar Kirchhoff-Institut für Physik Universität Heidelberg, 4. Februar 2010

Der ATLAS-Pixeldetektor

oder: Wie wir mit einer 80-Megapixel-Kamera 40 Millionen Bilder in der Sekunde machen

Ulrich Husemann Kirchhoff-Institut für Physik & Deutsches Elektronen-Synchrotron

Was wir untersuchen wollen...

- Derzeit gültiges Bild der Natur im Allerkleinsten:
 Standardmodell der Teilchenphysik (SM)
- Sehr ökonomisches Modell:
 - 6 Quarks und 6 Leptonen (und deren Antiteilchen)
 - 3 Kräfte: stark schwach elektromagnetisch
- Nur ein Teilchen noch nicht entdeckt: Higgs-Teilchen

Was wir untersuchen wollen...

- Derzeit gültiges Bild der Natur im Allerkleinsten:
 Standardmodell der Teilchenphysik (SM)
- Sehr ökonomisches Modell:
 - 6 Quarks und 6 Leptonen (und deren Antiteilchen)
 - 3 Kräfte: stark schwach elektromagnetisch
- Nur ein Teilchen noch nicht entdeckt: Higgs-Teilchen

- Wir erwarten, dass das Standardmodell nicht der Weisheit letzter Schluss ist → Suche nach neuen Teilchen und Kräften
- Zu diesem Zweck gebaut und seit November/Dezember 2009 (endlich!) in Betrieb: LHC – der Large Hadron Collider

- Wir erwarten, dass das Standardmodell nicht der Weisheit letzter Schluss ist → Suche nach neuen Teilchen und Kräften
- Zu diesem Zweck gebaut und seit November/Dezember 2009 (endlich!) in Betrieb: LHC – der Large Hadron Collider
- Neue Teilchen sind (vermutlich) schwerer als bekannte
 - Teilchenkollisionen bei höchsten Energien
 - LHC: Protonen mit bis zu 7 TeV (1 Proton: Energie wie Mücke im Flug)

- Wir erwarten, dass das Standardmodell nicht der Weisheit letzter Schluss ist → Suche nach neuen Teilchen und Kräften
- Zu diesem Zweck gebaut und seit November/Dezember 2009 (endlich!) in Betrieb: LHC – der Large Hadron Collider
- Neue Teilchen sind (vermutlich) schwerer als bekannte
 - Teilchenkollisionen bei höchsten Energien
 - LHC: Protonen mit bis zu 7 TeV (1 Proton: Energie wie Mücke im Flug)
- Neue Teilchen werden sehr selten erzeugt
 - Kollisionsexperiment so oft wie möglich wiederholen
 - LHC: Pakete mit je 100 Milliarden Protonen kreuzen sich 40 Millionen mal pro Sekunde, etwa 20 Proton-Proton-Kollisionen pro Kreuzung

LHC – der Large Hadron Collider

LHC – der Large Hadron Collider

4

LHC-Beschleuniger: Proton-Proton- und Blei-Blei-Kollisionen

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Dei

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Der ATLAS-Pixeldetektor

ATLAS-Fakten:

- ***** 45 m lang, 25 m hoch
- Gewicht: 7000 Tonnen
- * 100 Millionen Elektronikkanäle

ATLAS-Fakten:

- ***** 45 m lang, 25 m hoch
- Gewicht: 7000 Tonnen
- * 100 Millionen Elektronikkanäle

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Der ATLAS-Pixeldetektor

Spurdetektoren

ATLAS – A Toroidal LHC ApparatuS

7

ATLAS – A Toroidal LHC ApparatuS

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Der ATLAS-Pixeldetektor

Aufgaben des Spurdetektors

Impulsmessung:

- Bestimme Spuren geladener Teilchen aus Spurpunkten
- Ablenkung in Magnetfeld umgekehrt proportional zu Impuls des Teilchens: p_T [GeV] = 0.3 · B [T] · R [m]

Aufgaben des Spurdetektors

- Vertexrekonstruktion:
- Gemeinsamer Ursprungsort von zwei oder mehr Spuren?
- Langlebige Teilchen (z.B. Teilchen mit b-Quarks): einige Spuren kommen nicht von Kollisionspunkt

Impulsmessung:

- Bestimme Spuren geladener Teilchen aus Spurpunkten
- Ablenkung in Magnetfeld umgekehrt proportional zu Impuls des Teilchens: p_T [GeV] = 0.3 · B [T] · R [m]

- Interessante Physikprozesse: Produktion von Teilchen mit b-Quarks, z.B. Higgs-Teilchen zerfällt in bb-Paar
- "B-Tagging": wichtiges
 Werkzeug zur Trennung von
 Signalprozessen mit b-Quarks
 und Untergrundprozessen
- ct(B[±]-Meson) = 491 µm
 → typische Zerfallslängen im
 Laborsystem: einige Millimeter
 bis Zentimeter

- Anforderungen an innerste Lage des ATLAS-Detektors:
 - Hohe Auflösung, z. B. besser als 15 µm in transversalem Stoßparameter für Teilchen mit hohem Transversalimpuls

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Der ATLAS-Pixeldetektor

- Anforderungen an innerste Lage des ATLAS-Detektors:
 - Hohe Auflösung, z. B. besser als 15 µm in transversalem
 Stoßparameter für Teilchen mit hohem Transversalimpuls
 - Schnelle Auslese: 40 Millionen Strahlkreuzungen pro Sekunde

- Anforderungen an innerste Lage des ATLAS-Detektors:
 - Hohe Auflösung, z. B. besser als 15 µm in transversalem Stoßparameter für Teilchen mit hohem Transversalimpuls
 - Schnelle Auslese: 40 Millionen Strahlkreuzungen pro Sekunde
 - Hohe Granularität = viele Auslesekanälen pro Fläche:

- Anforderungen an innerste Lage des ATLAS-Detektors:
 - Hohe Auflösung, z. B. besser als 15 µm in transversalem Stoßparameter für Teilchen mit hohem Transversalimpuls
 - Schnelle Auslese: 40 Millionen Strahlkreuzungen pro Sekunde
 - Hohe Granularität = viele Auslesekanälen pro Fläche:
 - Erwartete Spurdichte 5 cm vom Kollisionspunkt: 10–50 pro cm² und Kollision

- Anforderungen an innerste Lage des ATLAS-Detektors:
 - Hohe Auflösung, z. B. besser als 15 µm in transversalem
 Stoßparameter für Teilchen mit hohem Transversalimpuls
 - Schnelle Auslese: 40 Millionen Strahlkreuzungen pro Sekunde
 - Hohe Granularität = viele Auslesekanälen pro Fläche:
 - Erwartete Spurdichte 5 cm vom Kollisionspunkt: 10–50 pro cm² und Kollision
 - Aber: Spurerkennung funktioniert nur, wenn einzelner Auslesekanal im Mittel höchstens bei jeder 50. bis 100. Kollision anspricht

- Anforderungen an innerste Lage des ATLAS-Detektors:
 - Hohe Auflösung, z. B. besser als 15 µm in transversalem Stoßparameter für Teilchen mit hohem Transversalimpuls
 - Schnelle Auslese: 40 Millionen Strahlkreuzungen pro Sekunde
 - Hohe Granularität = viele Auslesekanälen pro Fläche:
 - Erwartete Spurdichte 5 cm vom Kollisionspunkt: 10–50 pro cm² und Kollision
 - Aber: Spurerkennung funktioniert nur, wenn einzelner Auslesekanal im Mittel höchstens bei jeder 50. bis 100. Kollision anspricht
 - Streuung der Teilchen vermeiden \rightarrow so wenig Material wie möglich

- Anforderungen an innerste Lage des ATLAS-Detektors:
 - Hohe Auflösung, z. B. besser als 15 µm in transversalem Stoßparameter für Teilchen mit hohem Transversalimpuls
 - Schnelle Auslese: 40 Millionen Strahlkreuzungen pro Sekunde
 - Hohe Granularität = viele Auslesekanälen pro Fläche:
 - Erwartete Spurdichte 5 cm vom Kollisionspunkt: 10–50 pro cm² und Kollision
 - Aber: Spurerkennung funktioniert nur, wenn einzelner Auslesekanal im Mittel höchstens bei jeder 50. bis 100. Kollision anspricht
 - Streuung der Teilchen vermeiden \rightarrow so wenig Material wie möglich
 - Strahlenhärte: Detektor muss in 4–5 Jahren mindestens 500 kGy aushalten (Vergleich ISS: < 0.1 Gy/Jahr)

- Anforderungen an innerste Lage des ATLAS-Detektors:
 - Hohe Auflösung, z. B. besser als 15 µm in transversalem Stoßparameter für Teilchen mit hohem Transversalimpuls
 - Schnelle Auslese: 40 Millionen Strahlkreuzungen pro Sekunde
 - Hohe Granularität = viele Auslesekanälen pro Fläche:
 - Erwartete Spurdichte 5 cm vom Kollisionspunkt: 10–50 pro cm² und Kollision
 - Aber: Spurerkennung funktioniert nur, wenn einzelner Auslesekanal im Mittel höchstens bei jeder 50. bis 100. Kollision anspricht
 - Streuung der Teilchen vermeiden \rightarrow so wenig Material wie möglich
 - Strahlenhärte: Detektor muss in 4–5 Jahren mindestens 500 kGy aushalten (Vergleich ISS: < 0.1 Gy/Jahr)
- Obiger Anforderungskatalog: derzeit nur durch Hybrid-Pixeldetektoren erfüllbar

CCD: Charge-Coupled Device

- Physik-Nobelpreis 2009 für
 W. S. Boyle und G. E. Smith
- Standard f
 ür Digitalkameras: Massenprodukt
- Pixelgrößen: ca. 5x5–10x10 µm²
- Bereits in Teilchenphysik benutzt, z.B. SLD (SLAC)
- Nachteile von CCDs:
 - CCD-Pixel werden seriell ausgelesen → zu langsam
 - Sensoren nicht ausreichend strahlenhart

Funktionsprinzip eines CCD-Chips

SLD Vertex Detector

- Funktionsprinzip von Hybrid-Pixeldetektoren
 - Detektor = Diode in Sperrrichtung \rightarrow Verarmungszone
 - Geladenes Teilchen ionisiert Detektormaterial \rightarrow elektrisches Signal

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Der ATLAS-Pixeldetektor

Hybrid-Pixeldetektor:

- Pixelsensor
- 16 Auslesechips (0,25 µm CMOS)
- Substrat f
 ür weitere Elektronik ("Flex")
- Einige Kennzahlen:
 - Pixelgröße:
 50×400 µm²
 - Sensorfläche: ca. 63×24 mm²
 - 2880 Auslesekanäle pro Chip

Der Auslesechip: FE-I3

- Analogteil (für jeden Kanal):
 - Gleichstromkopplung an Pixel
 - Ladungsempfindlicher Verstärker
 - Diskriminator

Der Auslesechip: FE-I3

- Analogteil (für jeden Kanal):
 - Gleichstromkopplung an Pixel
 - Ladungsempfindlicher Verstärker
 - Diskriminator
- Digitalteil (für je zwei Kanäle):
 - Koordinaten des Pixels
 - Zeitinformation f
 ür ansteigende/ abfallende Flanke des Diskriminatorsignals

Der Auslesechip: FE-I3

- Analogteil (für jeden Kanal):
 - Gleichstromkopplung an Pixel
 - Ladungsempfindlicher Verstärker
 - Diskriminator
- Digitalteil (für je zwei Kanäle):
 - Koordinaten des Pixels
 - Zeitinformation f
 ür ansteigende/ abfallende Flanke des Diskriminatorsignals
- Pufferspeicher (f
 ür jede Spalte):
 - Berechnung von Zeit über Schwelle
 → Maß für deponierte Ladung
 - Zwischenspeicher: Auslese mit Trigger

14

- Der Pixeldetektor: Herzstück des ATLAS-Detektors
 - 1,3 Meter lang, 25 cm Durchmesser
 - Drei konzentrische "Barrel"-Lagen: 5,05–12,25 cm vom Strahl entfernt
 - Zwei Endkappen mit je drei "Disks"

- Jede Lage: Kohlefaser-"Staves" mit je 13 Pixelmodulen
- Insgesamt: 1,7 m² Sensorfläche mit 80,4 Millionen Pixel

Detektor-Infrastruktur

- Mechanische Aufhängung
- Optische Datenübertragung an zentrales Auslesesystem
- C₃F₈-Kühlsystem:
 - Abwärme der Auslesechips
 - Sensoren bei –20°C → Rauschen und Strahlenschäden reduziert
- Stromversorgung (separat f
 ür jedes Modul):
 - Niederspannung f
 ür Analog- und Digitalteil der Auslesechips
 - Hochspannung f
 ür Verarmungsspannung
- Monitoring und Sicherheitssysteme

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Der ATLAS-Pixeldetektor

ATLAS-Pixeldetektor in Bildern

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Der ATLAS-Pixeldetektor

Einbau des Pixeldetektors

Herablassen in die ATLAS-Kaverne

Treffer auf rekonstruierten Spuren im Inneren Detektor (Seitenansicht)

Treffer auf rekonstruierten Spuren im Inneren Detektor (Seitenansicht)

Energieverlust geladener Teilchen als Funktion von Ladung × Impuls

Kalibration und Alignment: wie genau sind Position und "Antwort" des Detektors bekannt?

 Kalibration und Alignment: wie genau sind Position und "Antwort" des Detektors bekannt?

 Kalibration und Alignment: wie genau sind Position und "Antwort" des Detektors bekannt?

Quo Vadis, Pixel?

Datennahme!

- Planungen f
 ür Upgrade von Beschleuniger und Detektoren im vollen Gange
 - Lebensdauer der Detektoren begrenzt (z.B. Strahlenschäden)
 - Höhere Kollisionsraten
 - Modernere Detektortechnologie
- Planungen bei ATLAS:
 - Phase I (ca. 2014): neue innerste
 Pixellage bei 3,7 cm, in bestehenden
 Detektor eingefügt
 - Phase II ("super-LHC", ca. 2020): komplett neuer Innerer Detektor

Science@KIP-Seminar, 4. Februar 2010, U. Husemann: Der ATLAS-Pixeldetektor

- Physik am LHC: Silizium-Pixeldetektor hat Schlüsselrolle
 - Genaue Vermessung von Teilchenspuren nahe am Kollisionspunkt: Ursprungsort und Impuls
 - Identifikation von Teilchen mit b-Quarks

- Physik am LHC: Silizium-Pixeldetektor hat Schlüsselrolle
 - Genaue Vermessung von Teilchenspuren nahe am Kollisionspunkt: Ursprungsort und Impuls
 - Identifikation von Teilchen mit b-Quarks
- Herausforderungen:
 - Hohe Kollisionsraten: 40 Millionen Strahlkreuzungen pro Sekunde
 - Hohe Strahlenbelastung
 - Materialbudget: so wenig wie möglich

- Physik am LHC: Silizium-Pixeldetektor hat Schlüsselrolle
 - Genaue Vermessung von Teilchenspuren nahe am Kollisionspunkt: Ursprungsort und Impuls
 - Identifikation von Teilchen mit b-Quarks
- Herausforderungen:
 - Hohe Kollisionsraten: 40 Millionen Strahlkreuzungen pro Sekunde
 - Hohe Strahlenbelastung
 - Materialbudget: so wenig wie möglich
- ATLAS-Pixeldetektor:
 - Erfolgreiche Inbetriebnahme 2008–2009 \rightarrow sehr gute Performance
 - Bereit für die Datennahme am LHC ab Februar/März 2010