

Kleinste Teilchen und höchste Energien Die Suche nach dem Higgs-Boson am Large Hadron Collider

Thomas-Mann-Gymnasium Stutensee 12. April 2013

Wer bin ich?

Promotion

Siegen 2005 HERA-B-Experiment am Deutschen Elektronen-Synchrotron DESY

UNIVERSITÄT SIEGEN

Postdoc Rochester, Yale (2005–2008)

CDF-Experiment am Fermi National Accelerator Laboratory, Chicago

Nachwuchsgruppenleiter DESY und HU Berlin (2008–2013) ATLAS-Experiment am CERN, Genf

Professor

Karlsruher Institut für Technologie, Experimentelle Kernphysik (seit Juli 2011) CMS-Experiment am CERN, Genf

Faszination Teilchenphysik

- Physik wie ist unsere Welt aufgebaut?
 - Was sind die fundamentalen Bausteine unserer Welt?
- Technologie wie funktioniert das?
 - Riesige Nachweisgeräte, µm-Präzision
 - Verarbeitung der Datenflut

Gesellschaft

- … und wozu ist das alles gut?
- Neues Weltbild, vgl. Quantenmechanik?
- Internationale Zusammenarbeit
- Spin-offs → direkter wirtschaftlicher Nutzen

Das Standardmodell der Teilchenphysik

- Seit 1960er Jahren: "Standardmodell der Teilchenphysik"
 - 12 Elementarteilchen in drei Familien
 - Zu jedem Teilchen: Antiteilchen
 - Drei Kräfte
- Experimentell mit großer Genauigkeit bestätigt
- Juli 2012: Hinweise auf das Higgs-Boson

Kräfte im Standardmodell

- Kräfte ("Wechselwirkungen"): Austausch von Überträgerteilchen mit Spin 1 ("Eichbosonen")
 - Starke Wechselwirkung → Eichbosonen: 8 Gluonen
 - Elektromagnetische Wechselwirkung → Eichboson: Photon
 - Schwache Wechselwirkung → Eichbosonen: W[±]-, Z-Bosonen
- Vereinigung der elektromagnetischen und schwachen Wechselwirkung: elektroschwache Wechselwirkung

[http://www.particlephysics.ac.uk/]

Teilchen im Standardmodell

- Alle Teilchen: Fermionen (Spin 1/2)
- Elektrische Ladung:
 - Leptonen: ganzzahlig
 - Quarks: gebrochenzahlig
- Starke Kraft: "Confinement"
 - Keine freien Quarks, Bindung zu Hadronen = Baryonen + Mesonen
 - Baryonen: Quark + Quark + Quark
 - Mesonen: Quark-Antiquark-Paar
- Vorkommen in der Natur:
 - Alle Materie auf der Erde: Teilchen der 1. Familie
 - 2. und 3. Familie dennoch wichtig: z. B. kosmische Strahlung, Quantenkorrekturen

Das Standardmodell der Kosmologie

- Seit ca. 15 Jahren: konsistentes Modell von der Entwicklung des Universums seit dem Urknall → "Standardmodell der Kosmologie"
 - Passen Teilchenphysik und Kosmologie zusammen?

Dunkle Materie und Dunkle Energie

uchen und höchste Energien – TMG Stutensee

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)

8

Lösungsideen?

Supersymmetrie ("SUSY")?

- Die "letzte noch fehlende Symmetrie" in der Natur: Spiegelteilchen zu jedem Teilchen im Standardmodell
- Keine Hinweise auf SUSY, einfachste Formen bereits von LHC ausgeschlossen

Zusätzliche Raumdimensionen?

Keine Hinweise am LHC (z. B. mikroskopische schwarze Löcher)

Die Nadel im Heuhaufen

Hunts Needle in a Haystack

How LONG does it take to find a needle in a haystack? Jim Moran, Washington, D. C., publicity man, recently dropped a needle into a convenient pile of hay, hopped in after it, and began an intensive search for (a) some publicity and (b) the needle. Having found the former, Moran abandoned the needle hunt.

- Erzeugung und Nachweis neuer Elementarteilchen in Kollisionen bekannter Elementarteilchen "im Labor"
 - Neue Elementarteilchen vermutlich sehr schwer
 - Prozesse mit neuen Elementarteilchen sehr selten
- Lösung: Experimente an Teilchenbeschleunigern
 - Beschleuniger: höchste mögliche Energie und Kollisionsrate
 - Experimente: effizienter Filter f
 ür seltene neue Prozesse

Der Large Hadron Collider

Was ist CERN?

CERN = Europäisches Teilchenphysiklabor Weltweit größtes Labor für Teilchenphysik, gegründet 1954 Historischer Name: "Conseil Européen pour la Recherche Nucléaire" 2400 Angestellte, fast 10000 Gäste (>100 Nationalitäten)

ALICE-Experiment: Schwerionenphysik

LHCb-Experiment: Symmetrie Materie/Antimaterie

ATLAS-Experiment:

öchste Energien – TMG Stutensee

Vielzweckexperiment

rich Husemann nphysik (IEKP)

Prinzip des Teilchenbeschleunigers

Proton-Proton-Kollisionen am LHC

- Proton-Proton-Kollisionen
 - Protonenpakete treffen sich
 20 Millionen Mal pro Sekunde
 - Ca. 30 Kollisionen pro Zusammentreffen
 → 0,6 GHz Kollisionsrate
 - Experimente: 300-600 interessanteste Kollisionen pro Sekunde aufgezeichnet
 - Gesamtzahl der aufgezeichneten Ereignisse 2010-1012: ca. 2 Milliarden
- Ein Higgs-Boson alle 3,5 Milliarden Kollisionen produziert (nicht nachgewiesen!)

Teilchennachweis

ATLAS

Myon-Detektor Kalorimeter **ATLAS-Fakten: *** 45 m lang, 25 m hoch Gewicht: 7000 Tonnen * 100 Millionen Kanäle * Spurdetektoren 5

CMS – Der Compact Muon Solenoid

Suche nach dem Higgs-Boson

Warum ist Masse so wichtig?

- Fragen an die Natur:
 - Warum haben Elementarteilchen Masse? (→ Higgs-Mechanismus)
 - Warum sind die Massen so wie sie sind? (\rightarrow ???)

Gedankenexperiment: was wäre wenn...

Veränderung	Konsequenz
Masse des Elektrons 10× größer	Atome viel größer, Menschen 20 Meter groß
Masse des d-Quarks Null (oder leichter als Masse des u-Quarks)	Protonen instabil, kein Wasserstoff, Neutronen stabil ("kosmisches Billard")
Masse des W-Bosons kleiner als in der Natur	Kernfusion in Sternen läuft schneller ab, Sonne wäre schon "abgebrannt"

Der Higgs-Mechanismus

- Problem: Teilchen im Standardmodell "eigentlich" masselos
- Lösung: Higgs-Mechanismus
 - Einführung eines neuen Quantenfeldes
 - Masse durch Kopplung an Feld
- Mitte der 1960er Jahre: Idee "lag in der Luft"
 - Publiziert von: Brout, Englert; Guralnik, Hagen, Kibble; Higgs
 - Neues Feld → neues Teilchen (P. Higgs)

Higgs: die Party-Analogie

Wie Elementarteilchen Masse bekommen:

[D. Miller]

Higgs: die Party-Analogie

Wie das Higgs-Teilchen Masse bekommt:

[D. Miller]

Übrigens...

Protonen und Neutronen: zusammengesetzte Teilchen

Drei "Valenzquarks"

Zusätzlich: "Seequarks" und Gluonen

Masse des Protons

- 1% aufgrund Massen der Quarks
- 99% aus kinetischer und Bindungsenergie (E = mc²)

Das Neueste vom Higgs-Boson

4. Juli 2012:

- "CERN experiments observe particle consistent with long-sought Higgs boson" (CERN-Pressemitteilung)
- Erste große Entdeckung am LHC
- Kompatibel mit Higgs-Boson des Standardmodells

14. März 2013

- "New results indicate that particle discovered at CERN is a Higgs boson" (CERN-Pressemitteilung)
- Genauere Untersuchungen mit mehr Daten
- Teilchen könnte eines von mehreren Higgs-Bosonen sein

SAY GOD PARTICLE

ONE MORE GODDAMN TIME

Feynman-Diagramme

Weltlinie eines Fussballs

R.P. Feynman

Elemente von Feynman-Diagrammen:

Fermion-Linien (Antiteilchen: rückwärts in der Zeit)

Boson-Linie

Vertex (Rechenregel: $\sqrt{\alpha}$ pro Vertex)

Feynman-Diagramme: Beispiele

Compton-Streuung: drei unterschiedliche Feynman-Diagramme

Korrekturen höherer Ordnung (in α): Schleifendiagramme ("Loops")

Indirekte Schranken: Theorie & Präzisionsdaten

Blue-Band-Plot

Direkte Suchen vor dem LHC-Start

Vorhang auf für den LHC

Datennahme am LHC

Analyse der Daten

Ablauf einer Datenanalyse (schematisch) Vorselektion der Daten nach Qualität → zentral am CERN Auswahl von Ereignissen → Grid-Computing (u. a. KIT) Statistische Analyse → Lokale Computer-Cluster

- Veröffentlichung der Resultate
 - Ggf. Vorveröffentlichung als Konferenzbeitrag
 - Endgültige Veröffentlichung in Fachzeitschrift

Higgs-Zerfälle

Erste Ziele der Higgs-Analyse am LHC

- Entdeckung
- Erste Eigenschaften: Produktionsrate und Masse
- Higgszerfall in zwei Photonen
 - Relativ geringe Rate
 - Sehr gute Massenbestimmung
- Higgszerfall in vier Leptonen
 - Higgs-Zerfall in zwei Z-Bosonen, beide Z-Bosonen zerfallen in e⁺e⁻ oder µ⁺µ⁻
 - Relativ geringe Rate
 - Wenig Untergrund, sehr gute Massenbestimmung
- Signale auch in anderen Kanälen beobachtet

Was ist Invariante Masse?

Elementarteilchen bewegen sich annähernd mit Lichtgeschwindigkeit c → spezielle Relativitätstheorie

Ort x und Zeit t

- "Relativ" \rightarrow abhängig vom Bezugssystem
- Zusammenhang: "Raumzeit"
- Abstände s in der Raumzeit: unabhängig vom Bezugssystem ("invariant")

$$s^2 = c^2 \Delta t^2 - \Delta x^2$$

- Energie *E* und Impuls *p*
 - Zusammenhang analog zu Ort und Zeit
 - Invariante Größe: (Ruhe-)Masse des Teilchens

$$m^2c^4 = E^2 - p^2c^2$$

 \rightarrow Massen aus Energien und Impulsen bestimmbar

Minkowski-Diagramm

Higgs-Zerfall in zwei Photonen

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

Higgs-Zerfall in zwei Photonen

[https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13001TWiki]

- Nachweis der Photonen: elektromagnetisches Kalorimeter
- Herausforderungen:
 - Unterscheidung von zufälligen Photonpaaren
 - Genaue und stabile Energiekalibration

Higgs-Zerfall in vier Leptonen

Nachweis:

- Myonen: Spurdetektor und Myondetektor
- Elektronen: Spurdetektor und elektromagnetisches Kalorimeter
- Herausforderung:
 - Wenige Signalereignisse

[https://twiki.cern.ch/twiki/pub/AtlasPublic/HiggsPublicResults/]

Produktionsrate des Higgs-Bosons

Produktionsraten in allen Kanälen mit Erwartung vom Standardmodell verträglich (μ = 1). Zerfall in zwei Photonen: erhöhte Rate?

Weitere Higgs-Eigenschaften: Spin

Spin des Higgs-Bosons

- Spin kann nur 0 oder 2 sein (Zerfall in zwei Photonen)
- Hypothesentest: Daten bevorzugen Spin 0 über Spin 2
- Bedeutung fundamentaler Spin-0-Teilchen in der Natur?

Weitere Higgs-Eigenschaften

Higgs-Masse und Stabilität des Higgs-Mechanismus

- Gemessene Higgs- und Top-Quark-Massen: Higgs-Mechanismus "metastabil"
- Bedeutung f
 ür Entwicklung des Universums?

Ausblick

Quo vadis, LHC?

Breites Forschungsprogramm

- Untersuchung des Higgs-Bosons
- Präzisionsmessungen im Standardmodell

Suche nach neuer Physik: Supersymmetrie? Extra-Dimensionen? Etwas, an das wir bisher nicht gedacht hatten???

- Neue Entdeckungen benötigen
 - höhere Energien und/oder
 - höhere Kollisionsraten
 - → Upgrade des LHC und der Experimente

[H. Murayama]

Zukunftspläne

- Datennahme am LHC geplant bis 2030
- Seit Februar 2013: Shutdown zum Ausbau des LHC zur Designenergie
- Zwei weitere Shutdowns 2018 und 2022/23: höhere Datenrate, verbesserte Detektoren

CMS-Upgrade am KIT: Neuer Pixeldetektor

- Phase 1: neuer verbesserter Silizium-Pixeldetektor
 - KIT: Produktionszentrum für etwa 400 Detektormodule
 - Derzeit: Vorbereitung der Produktion
 - Einbau 2016/2017

Zusammenfassung

- Ein (das?) Higgs-Boson am LHC \rightarrow Triumph der Wissenschaft
 - Fast 50 Jahre alte Idee: Higgs-Mechanismus und Higgs-Teilchen
 - Fast 30 Jahre und 10000 Personen: Planung, Aufbau und Messungen am LHC
- Das Beste kommt noch: höhere Energien, viel mehr Daten

Zusatzfolien

Teilchennachweis im CMS-Detektor

Higgs-Boson: Theoretische Vorhersagen

- Higgs-Mechanismus im Standardmodell
 - Einfachste Art, Elementarteilchen Masse zu geben
 - Ein neues Teilchen: Higgs-Boson mit Spin 0 ("skalares Teilchen")
 - Masse des Higgs-Bosons nicht vorhergesagt
 - Falls Masse bekannt: alle weiteren Eigenschaften festgelegt (Produktionsmechanismus, Zerfälle, …)

Schranken auf die Higgs-Masse

- Obere Schranke: Kopplung des Higgs an sich selbst zu stark
- Untere Schranke: Mechanismus der Massenerzeugung bricht zusammen
- Erwartete Higgs-Masse: 120–200 GeV/c²

CMS-Upgrade am KIT: neuer Spurdetektor

- Phase 2: kompletter Spurdetektor ersetzt
 - Neues Konzept: frühes Verwerfen uninteressanter Spuren
 - KIT: Untersuchung neuer strahlungsresistenter
 Siliziummaterialien, erste Prototypen

		Radius	Protons	Neutrons	Ratio p/n	Total	Material
51	12.04.20	13 40cm	Klein ste Te	ilche f l und	höchste Er	ieraieA – T	MG Stonensee
		20cm	10	5	2.00	1 5.0	≥ 200µm
		15cm	15	6	2.50	21.0	≥ 200µm
		20cm 15cm	10 15	5 6	2.00 2.50	15.0 21.0	≥ 200µm ≥ 200µm

Ulrich Husemann Institut für Experimentelle Kernphysik (IEKP)