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Top Physics at the Tevatron in 2008
Era of precision top quark physics

Top mass combination: 0.8% total 
uncertainty (0.3% MC related)

Multivariate analysis techniques (e.g. for 
single top) → rely on correct modeling of 
signal and background (A. Harel’s talk)

Getting sensitive to more subtle effects, 
e.g. spin correlations

→  MC indispensable for signal acceptance  
 and background estimation

MC progress somewhat slower
Tendency to keep using known-and-
tested MC codes

Long turn-around times: generation – 
validation – tuning (despite close 
collaboration with MC authors)

Preference for data-driven methods and 
“pragmatic” solutions, e.g. re-weighting of 
existing MC

2

Best Independent Measurements

of the Mass of the Top Quark   (*=Preliminary)

CDF-I   dilepton 167.4 ± 11.4

D -I     dilepton 168.4 ± 12.8

CDF-II  dilepton* 171.2 ±   3.9

D -II    dilepton* 173.7 ±  6.4

CDF-I   lepton+jets 176.1 ±   7.3

D -I     lepton+jets 180.1 ±   5.3

CDF-II  lepton+jets* 172.7 ±   2.1

D -II    lepton+jets* 172.2 ±   1.9

CDF-I   alljets 186.0 ± 11.5

!2
/ dof = 6.9 / 11

Tevatron Run-I/II* 172.6 ±  1.4

150

Top Quark Mass (GeV)

CDF-II  alljets* 177.0 ±  4.1

CDF-II  b decay length 180.7 ± 16.8

March 2008190170

arXiv:0803.1683 [hep-ex]
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Standard Top Pair Signal MC

4

CDF DØ
CDF’s workhorse:
tt from PYTHIA v6.2 

DØ’s workhorse: tt + 0–2 jets from 
ALPGEN v2.1 with PYTHIA v6.3

Well established, for all of Run II (with a lot 
of Run I experience)
Leading order (LO) + parton showers (PS) 
→ scale to latest production cross sections
CTEQ5L (LO) parton distribution functions 
Field’s Tune A and Sakumoto’s tune for 
W/Z transverse momenta

Fairly new, since 2007 (but used ALPGEN 
v1.2 from 2004)
LO + PS + exact 2→n matrix elements: 
→ scale cross sections
CTEQ6L (LO) parton distribution functions
No additional tuning when using ALPGEN 
+ PYTHIA→ small effect (for PYTHIA-only 
samples: Tune A equivalent with CTEQ6L)

Multiple collisions in the same bunch 
crossing: mix with PYTHIA minimum bias 
events according to luminosity profile

Recently: multiple collisions from 
overlaying zero-bias data events (better 
description of beam and instrumental 
background)

Disadvantages:
LO generator
No hard radiation, e.g. for tt + jet(s)
No tt spin correlations

Disadvantages:
LO generator, but exact matrix elements 
for 2→n processes, spin correlations
Fairly new generator
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One Size Fits All?

Situation in 2008: no 
common MC generator for 
all of Tevatron top physics

Preference for PYTHIA-based 
MC generators

Special generators required 
for many analyses

Next-to-leading order (NLO) 
generators available, but not 
yet used as the standard

Reasons for MC choice:

Technical: incompatibilities 
with experiments’ software 
framework, turn-around 
times, …

Pragmatic: use what is 
available and validated

5
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MC for Top Pair Production
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MC for Special Analyses
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Single Top needs Higher Orders

Leading order MC not sufficient for single 
top production

s-channel at NLO: same kinematic distributions 
as LO → single K factor

But: large corrections in t-channel from 2→3 
process (initial state gluon splitting)

Observable: transverse momentum of 
“second b quark” (i.e. not from t→Wb 
decay):

2→2 process + parton shower: only from b 
quark PDF → good in soft and collinear regime

2→3 process: initial state gluon splitting 
→ good for larger transverse momenta

Challenge: matching with smooth transition and 
overlap removal
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t-Channel 2→3 Process

In this note, the matching of the t-channel samples is optimized. This is done by compar-
ing the distribution, which has to be matched, to the prediction of a next-to-leading-order
calculation, provided by the ZTOP software [11]. The occurring differences are minimized
by changing the matching parameters, especially the fraction of the NLO sample. The s-
and newly matched t-channel signal samples are then validated by means of the ZTOP
NLO calculations. The resulting deviations are used to estimate the systematic uncer-
tainty on the Monte Carlo model.
The note is organized as follows. In Section 2 the underlying theory of leading- and next-
to-leading-order calculations of t-channel single-top production is briefly discussed. The
software, which produced the NLO distributions, namely ZTOP, along with the relevant
parameters is described in Section 3. In Section 4 we give a short description of the
MadEvent MC samples and we illustrate the matching of the t-channel signal samples.
The validation of the samples, presented in Section 5, is followed by Section 6, which cov-
ers the estimate of the systematic uncertainty on the signal modeling. The note concludes
in Section 7 with suggestions for improvements of the single-top MC production.

2 Next-to-Leading-Order Calculations

NLO calculations are essential to compare theory with experimental results. The most
important NLO correction to the t-channel leading-order process shown in Figure 1 (a) is
the 2→3 process, which is known as W -gluon fusion, where an initial gluon splits into a
bb̄ pair (Figure 2 (a)).
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Figure 2: Some NLO Feynman diagrams of t-channel single-top production:
W -gluon fusion (a), initial state gluon splitting (b) and gluon radiation (c)

If the b quark is considered massless in the computation of the 2→3 matrix element, the
gluon splits into a real bb̄ pair with the final state b̄ quark (in the following called 2nd-b
quark in order to distinguish from the b quark coming from the decay of the top quark)
being collinear with the incoming gluon. Given that the internal b quark is on-shell, its
propagator is infinite and the Feynman diagram becomes singular. As in reality the b
quark is not massless, the mass mb regulates the collinear singularity, which is described
by terms of ln[(Q2 + m2

t )/m
2
b ], where Q2 is the virtuality of the W boson. The W -gluon

fusion cross section contains these logarithmic terms of order lnn[(Q2 + m2
t )/m

2
b ]/n! at

every order n of the perturbative expansion in the strong coupling due to the collinear
emission of gluons from the internal b quark propagator. This leads to the fact that, since
the logarithms are large, the perturbation series does not converge quickly.
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Single Top MC at CDF and DØ

Generate 2→2 and 2→3 
processes separately:

CDF: MadEvent (+PYTHIA for 
showering)

DØ: SingleTop MC generator based 
on CompHEP 
[E.E. Boos et al., Phys. Atom. Nucl. 69 
(2006) 1317]

Normalization of 2->2 and 2->3 to 
full NLO prediction from ZTOP
[Z. Sullivan, PRD 70 (2004) 114012]

Require smooth transition: split 
soft and hard regime at pT0 = 20 
GeV/c (CDF), 15 GeV/c (DØ)

Validate full kinematics against 
ZTOP, residual small differences: 
systematic uncertainty (approx. 
1–2%)
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Single Top Cross Section Matching
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Comparison: CDF vs. DØ

9

CDF: Top Transverse Momentum DØ: Top Transverse Momentum
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MC for Top Pair Production
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MC Systematic Uncertainties
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Standard Treatment of MC Uncertainties

11

Uncertainty CDF DØ

General 
MC Model

PYTHIA vs. HERWIG v6.510:
Different hadronization
Different underlying event tuning
Similar treatment of initial/final 
state radiation (ISR/FSR)

Until recently: no HERWIG 
samples available → no light 
quark fragmentation uncertainty
b quark fragmentation: differences 
in LEP vs. SLD data

Signal Model

ISR/FSR: specially tuned PYTHIA 
samples (ΛQCD and Q2 scales) 
→ sensitive to soft radiation
Parton distribution functions 
(PDFs): CTEQ6 eigenvector 
prescription, CTEQ vs. MRST

ISR/FSR: reweight jet multiplicity  
in ALPGEN tt + jets with data 
→ sensitive to hard radiation
Parton distribution functions: 
CTEQ6 eigenvector prescription, 
CTEQ vs. MRST

Jet Energy Scale 
(JES)

PYTHIA vs. HERWIG: extract JES 
correction uncertainties, e.g. dijet 
balance, fragmentation, out of 
cone correction
In-situ JES calibration: residual 
uncertainty from pT/η dependence
b quark JES: fragmentation model, 
color flow

In-situ JES calibration: residual 
uncertainty from pT/η dependence
Difference in response to b jets 
and light jets
MC smearing to match jet energy 
resolution in data
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Revisiting MC Systematic Uncertainties

Broad ongoing effort, 
especially for top mass 
analyses:

Checking with other generators: 
ALPGEN + PYTHIA, HERWIG + 
JIMMY, MC@NLO, MadGraph/
MadEvent

Investigation of double-counting 
MC uncertainties: general MC 
model vs. JES

New ideas, e.g. color 
reconnection 
→ see D. Wicke’s talk

Long-standing issue: tt pT 
mismatch between PYTHIA and 
HERWIG (small contribution to 
mass uncertainty)
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Revisiting MC Systematic Uncertainties

Broad ongoing effort, 
especially for top mass 
analyses:

Checking with other generators: 
ALPGEN + PYTHIA, HERWIG + 
JIMMY, MC@NLO, MadGraph/
MadEvent

Investigation of double-counting 
MC uncertainties: general MC 
model vs. JES

New ideas, e.g. color 
reconnection 
→ see D. Wicke’s talk

Long-standing issue: tt pT 
mismatch between PYTHIA and 
HERWIG (small contribution to 
mass uncertainty)
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Towards a Common Approach?

2007: Two joint CDF/DØ 
workshops on top mass 
systematic uncertainties

Step 1: understanding procedures 
and their correlations → much 
improved by joint workshops

Step 2: common approach to 
systematic uncertainties → more 
difficult, still work in progress…

Most important common issue: 
top mass combination

Common approach desirable but not 
strictly necessary

Sufficient to know correlations 
between systematic uncertainties in 
CDF and DØ

13

A Typical Joint CDF/DØ Workshop?
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MC for Top Pair Production

MC for Single Top Production

MC for Special Analyses

MC Systematic Uncertainties
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W Helicity in Top Quark Decays

Physics: is tWb coupling really V–A?

MC requirement: adjust distribution of 
observable cos θ* for different couplings

Solution 1: reweight cos θ*

DØ: cos θ* obtained from ALPGEN, checked 
against PYTHIA [PRL 100, 062004 (2008)]

CDF: cos θ* obtained from PYTHIA, checked 
against GGWIG* and HERWIG [CDF Note 
9144]

Solution 2: specialized generator

GGWIG for cos θ* templates [CDF Note 9215]

MadEvent (only for linearity checks, main 
acceptance from PYTHIA) [CDF Note 9114]

Typical systematic uncertainties: 2–5%

15

W

top boost
direction

neutrino

u/c quark

cos !*

charged lepton

d/s quark

GGWIG (Guillian, Campbell, 
Amidei, CDF only):
Useful extension to HERWIG  
→ tunable W helicities, gg vs 
qq fraction, etc.
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BSM Top Couplings: FCNC

Physics objective: limits on beyond 
standard model top couplings

CDF t→Zq search 
[arxiv:0805.2109 [hep-ex], submitted to PRL]

tZq vertex unknown to PYTHIA 
→ isotropic decay in cos θ* 

Solution: reweight cos θ* from PYTHIA

Closer to experimental observables: 
measures branching fraction

DØ q→tg search
[PRL 99 (2007) 191802]

CompHEP MC to modify top 
couplings

Closer to theoretical calculations: 
measures coupling

16

0 0.01 0.02 0.03 0.040

0.001

0.002

0.003 95% CL
90% CL
68% CL

–1DØ 230 pb

(κc / Λ)2 (TeV–2)g

(κ
u 
/ Λ

)2 
(T

eV
–2

)
g

–0.2 0 0.2

0

0.05

0.1

0.15

FCNC Feldman-Cousins Band (95% C.L.)

T
ru

e
 B

(t
!

Z
q
)

Measured B(t!Zq)

CDF II Preliminary 

! L dt = 1.9 fb–1

Best Fit:
B(t!Zq) = –0.0149 

95% C.L. Limit:
B(t!Zq) < 3.7%



TOP2008, Isola d’Elba, May 22, 2008, U. Husemann: MC for Top Pair and Single Top at the Tevatron

BSM Top Couplings: FCNC

Physics objective: limits on beyond 
standard model top couplings

CDF t→Zq search 
[arxiv:0805.2109 [hep-ex], submitted to PRL]

tZq vertex unknown to PYTHIA 
→ isotropic decay in cos θ* 

Solution: reweight cos θ* from PYTHIA

Closer to experimental observables: 
measures branching fraction

DØ q→tg search
[PRL 99 (2007) 191802]

CompHEP MC to modify top 
couplings

Closer to theoretical calculations: 
measures coupling

16

0 0.01 0.02 0.03 0.040

0.001

0.002

0.003 95% CL
90% CL
68% CL

–1DØ 230 pb

(κc / Λ)2 (TeV–2)g

(κ
u 
/ Λ

)2 
(T

eV
–2

)
g

–0.2 0 0.2

0

0.05

0.1

0.15

FCNC Feldman-Cousins Band (95% C.L.)

T
ru

e
 B

(t
!

Z
q
)

Measured B(t!Zq)

CDF II Preliminary 

! L dt = 1.9 fb–1

Best Fit:
B(t!Zq) = –0.0149 

95% C.L. Limit:
B(t!Zq) < 3.7%

Branching Fraction

Coupling



TOP2008, Isola d’Elba, May 22, 2008, U. Husemann: MC for Top Pair and Single Top at the Tevatron

Top Quark Production: gg vs. qq

tt production at the Tevatron: 
85% qq, 15% gg (NLO QCD)

CDF’s neural network analysis 
[CDF Note 8811] 

Neural net trained on kinematics 
of tt production and decay 

Sensitive to tt spin correlations 
→ choose HERWIG-based MC

LO MC: only 5% gg → tt
→ use GGWIG to adjust to NLO

MC generator systematics:

HERWIG vs. PYTHIA: small effect

HERWIG vs. MC@NLO: one of 
the largest uncertainties, approx. 
20%
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Forward Backward (Charge) Asymmetry

18

Physics objective: FB (charge) asymmetry 
[DØ: PRL 100 (2008) 142002, CDF 9156, CDF 9169]

Asymmetry genuine higher order effect

Kühn, Rodrigo: 4–5% [PRL 81 (1998) 49]

MC@NLO: 3.8%

LO generator: net asymmetry zero, but 
parton shower generates asymmetry from 
color flow (esp. for additional jets)

Dittmaier et al.: –8% at LO reduced to –1.5% 
[PRL 98 (2007) 262002]

Practical limitations for MC usage: 

Observed asymmetry sensitive to selection 
criteria → simplify acceptance (DØ), rely on 
standard PYTHIA MC (CDF) for acceptance

CDF: MC@NLO used only for checks 
(HERWIG-based, only small samples)
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Summary and Outlook

Top MC signal generators at the 
Tevatron: no one size fits all

Default: LO generators for tt signal MC

Single top MC: important higher order 
contributions 

Important part of systematic uncertainties, 
especially for top mass

Special analyses: special MC 
requirements, often not met by default 
generator

Ongoing efforts
Validation of new MC generators

Rethinking of established ways to extract 
systematic uncertainties

Future: working on common CDF/DØ 
approach

19

Thanks a lot to the CDF and DØ 
top physics analysis groups for 

their help in preparing this 
presentation!
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Generators for Tevatron Top Physics

20

Generator Who? What?

PYTHIA CDF & DØ everything

Herwig CDF everything, spin 
correlations, GGWIG

ALPGEN (+PYTHIA) CDF & DØ everything (DØ)
multijet final states

Sherpa DØ (& CDF) W/Z + multijet final states

MadGraph/MadEvent CDF & DØ special channels, 
BSM couplings

CompHEP DØ special channels, 
BSM couplings

MC@NLO CDF & DØ cross checks for special 
channels


