

News from the Top Status and Perspectives of Top-Quark Physics in Fall 2013

Meeting of the DFG Collaborative Research Center "Computational Particle Physics" Karlsruhe, October 9, 2013

Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology

A Brief History of the Top Quark

- 1973: CP violation in the standard model requires three quark generations
- Image: Second structure
 <
- Image: 1980ies: search for "light" top quarks in the decay W⁺ → tb, electroweak precision data indicate "heavy" top
- 1992: first indication for "heavy" top quarks at the Tevatron
- 1995: Tevatron experiments CDF and DØ publish discovery of the top quark with a mass of about 175 GeV

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

VIOLENT COLLISION between a proton and an antiproton (*center*) creates a top quark (*red*) and an antitop (*blue*). These decay to other particles, typically producing a number of jets and possibly an electron or positron.

Top – The Special One

Top is the only "free" quark: life time much smaller than hadronization time

$$au = rac{1}{\Gamma} pprox (1.5\,{
m GeV})^{-1} < rac{1}{\Lambda_{
m QCD}} pprox (0.2\,{
m GeV})^{-1}$$

 \rightarrow No bound states, spin transferred to decay products

Analyzing Top Quark Events

- Top decay in the standard model: B(t → Wb) ≈ 100%
- Challenging signature: multiple leptons & (b-)jets, missing transverse energy
- tt decay signatures characterized by W decays:
 - All-Hadronic: 45% of all decays, large QCD background
 - Lepton+Jets: 30% of all decays, moderate backgrounds
 - Dilepton: 5% of all decays, very clean, but small branching fraction

Tevatron Run II: 2001–2011

Tevatron Run II: 2001–2011

LHC – the Large Hadron Collider

LHC – the Large Hadron Collider

CMS Experiment: multi-purpose experiment

Proton-proton collider

- LHC Run I: 2010–2013
- 2010/2011: approx. 5 fb⁻¹ at √s = 7 TeV
- 2012: approx. 20 fb⁻¹ at √s = 8 TeV

ATLAS Experiment: multi-purpose experiment

From the Tevatron to the LHC

	Authors	Tops Produced per Experiment	Tops Reconstructed (Lepton+Jets, 1 b-Tag)
Tevatron Run II	600	70,000	2000

From the Tevatron to the LHC

	Authors	Tops Produced per Experiment	Tops Reconstructed (Lepton+Jets, 1 b-Tag)
Tevatron Run II	600	70,000	2000
LHC Run I	2500	6 million	150,000

From the Tevatron to the LHC

	Authors	Tops Produced per Experiment	Tops Reconstructed (Lepton+Jets, 1 b-Tag)
Tevatron Run II	600	70,000	2000
LHC Run I	2500	6 million	150,000
LHC Run II		50–100 million/year	

LHC: Top Factory Excellent Detectors – Unprecedented Statistics

6th International Workshop on Top Quark Physics

14-19 September 2013 Durbach, Germany

Recent workshop of the top physics community in Durbach:

- Several new results
- Lots of fruitful discussions

Outline

Top Pair Production

Single Top Production

Top + "Something Else"

Top Properties & New Physics

Top Pair Production

Single Top Production

Top + "Something Else"

Top Properties & New Physics

Top Pair Production: The Race for Ultimate Precision

Top Production Cross Section

Challenge for theory

- Major breakthrough in early 2013: full NNLO+NNLL (Czakon, Fiedler, Mitov)
- Typical uncertainty on total tt cross section: approx. 4%
- Upcoming: differential cross sections, production asymmetries, ...

Challenge for experiment

- Measurement of absolute production rates
- Requirements: best possible detector calibration, background estimation, and MC modeling

Examples of LO Feynman diagrams: gg, q $\overline{ ext{q}}$

Recent Results: Tevatron Combination

Recent Results: LHC @ 7 TeV

CMS Preliminary, $\sqrt{s} = 7$ TeV

The Path Towards Ultimate Precision

- 8 TeV: consistent cross section results, uncertainties still slightly larger (e.g. luminosity, pileup)
 - Major progress in the last years
 - Lepton+jets: in-situ constraints of systematics
 - Dilepton the new gold-plated channel in LHC era: large data samples, almost background-free
 - Conceptual progress better separation of uncertainties: detector vs. signal vs. background modeling
 - Current limitation: extrapolation to full phase space with MC tools
 - Fiducial cross sections
 - Differential cross sections

Fiducial Cross Section

- Idea: measure cross section only in part of phase space accessible to experiment \rightarrow reduced model dependence, comparison with models
- Implementation: particle-level selection close reconstruction cuts

particle level	reconstruction level
exactly one lepton (dressed e or μ), $p_T > 25$ GeV and $\eta < 2.5$	exactly one isolated lepton (e or μ), $p_T > 25$ GeV and $\eta < 2.5$
veto second lepton (dressed e or μ), $p_T > 15$ GeV and $\eta < 2.5$	veto second isolated lepton (e or μ), $p_T > 25$ GeV and $\eta < 2.5$
at least three jets, anti- k_T ($R = 0.4$), $p_T > 25$ GeV and $\eta < 2.5$	at least three jets, anti- k_T ($R = 0.4$), $p_T > 25$ GeV and $\eta < 2.5$
at least one <i>b</i> -tagged jet, <i>B</i> hadron with $p_T > 5$ GeV within $\Delta R = 0.3$ of the jet	at least one <i>b</i> -tagged jet, MV1 algorithm at 70% efficiency
$E_T^{\text{miss}} > 25 \text{ GeV}$, all neutrinos in the event	$E_T^{\text{miss}} > 30 \text{ GeV}$
$m_T^W > 30 \text{ GeV}$	$m_T^W > 30 \text{ GeV}$

Fiducial Cross Section: Result

Differential Cross Sections

[Eur. J. Phys. C73 (2013) 2261]

Differential Cross Sections

Migration Matrix e + jets 0.00 0.01 0.04 0.22 0.74 0.00 0.03 0.20 0.66 0.11 0.02 0.17 0.66 0.14 0.01 0.14 0.67 0.17 0.01 0.00 0.66 0.20 0.02 0.00 0.00

Reconstructed $\mathbf{y}_{t\bar{t}}$

1 1.5

0.5

0.00

2 2.5

[Eur. J. Phys. C73 (2013) 2261]

Normalized differential cross section \rightarrow access to shapes of distributions

[Eur. J. Phys. C73 (2013) 2261]

0

2

3

-2

-1

-3

Examples of Differential Distributions

Examples of Differential Distributions

Top Transverse Momentum

Top Transverse Momentum

Small tension between CMS and ATLAS results \rightarrow under study

Top Pair Production

Single Top Production

Top + "Something Else"

Top Properties & New Physics

Single Top Production: The Importance of Being Single

[F. Maltoni]

Electroweak Single Top Production

- Direct measurement of CKM matrix element |V_{tb}|
- 100% polarized top quarks
- PDF constraints via t/t charge ratio
- Access to BSM physics (e.g. anomalous couplings)

Single Top at the Tevatron

- Full Run II data analyzed, still statistics limited
- Consistent s+t channel cross section results, e.g.
 - DØ lepton+jets: (4.11^{+0.60}__0.55) pb
 - CDF lepton+jets: (3.04^{+0.57}_{-0.53}) pb
- s-channel only cross section:
 - So far only accessible at the Tevatron
 - \rightarrow "legacy measurement"
 - CDF and DØ independently: 3.7σ evidence

Single Top Production at the LHC

t-Channel Single Top Cross Section

- t-channel cross section:
 - Large datasets at the LHC → now systematically limited
 - New: first LHC combination
- Associated Wt production:
 - Established at the LHC (4-6 σ)
 - ATLAS: (27.2 ± 5.8) pb
 - CMS: (23.4 +5.5 –5.4) pb
 - Theory: (22.2 ± 1.5) pb
- Polarization and anomalous couplings → later

Top Pair Production

Single Top Production

Top + "Something Else"

Top Properties & New Physics

Production of Top + "Something Else"

Top + "Something Else": Overview

Signature	Impact
tī + (heavy flavor) jets	QCD test Background to Higgs and BSM searches
tt + missing transverse energy	Heavy BSM particles decaying into top
tī + vector bosons (γ, W, Z)	Electroweak top couplings Background to Higgs and BSM searches
tī + Higgs	Direct measurement of Yukawa couplings
Single top + Higgs	Sign of top Yukawa coupling

Top + "Something Else": Overview

Signature	Impact
tīt + (heavy flavor) jets	QCD test Background to Higgs and BSM searches
tt + missing transverse energy	Heavy BSM particles decaying into top
tī + vector bosons (γ, W, Z)	Electroweak top couplings Background to Higgs and BSM searches
tī + Higgs	Direct measurement of Yukawa couplings
Single top + Higgs	Sign of top Yukawa coupling

Top Pairs + Jets

- "Additional jets" = particle jets not pointing back to partons from top decay
- Comparison with MC generators
 - Generally good agreement with MC programs
 - Renormalization/factorization scale uncertainties seem too conservative

Associated Top-Higgs Production

Largest contribution: $\textbf{H} \rightarrow \textbf{b} \bar{b}$

- Small SM production cross section (0.13 pb at 126 GeV), many possible final states with different signal/background
- Best sensitivity: include as many final states as possible \rightarrow statistical combination

Associated Top-Higgs Production

Largest contribution: $\textbf{H} \rightarrow \textbf{b} \bar{b}$

- Small SM production cross section (0.13 pb at 126 GeV), many possible final states with different signal/background
- Best sensitivity: include as many final states as possible \rightarrow statistical combination

Examples of ttH Final States

 $\begin{array}{l} H \rightarrow \gamma \gamma : \\ small \ branching \ fraction, \\ but \ small \ backgrounds \\ and \ good \ m_{\gamma\gamma} \ resolution \end{array}$

[ATLAS-CONF-2013-080]

Examples of ttH Final States

 $\begin{array}{l} H \rightarrow \gamma \gamma : \\ small \ branching \ fraction, \\ but \ small \ backgrounds \\ and \ good \ m_{\gamma\gamma} \ resolution \end{array}$

ttH \rightarrow Lepton(s) $\gamma\gamma$ X Events / 5 GeV **ATLAS** preliminary Data SR+CR background fit SM signal ($m_{\mu} = 126.8 \text{ GeV}$) SR-only background fit Leptonic channel Signal region 3 2 2000 Control region $\sqrt{s} = 8 \text{ TeV } \int \text{Ldt} = 20.3 \text{ fb}^{-1}$ 1000 100 110 120 130 140 150 160 m_{yy} [GeV]

[ATLAS-CONF-2013-080]

 $H \rightarrow b\bar{b}/\tau^+\tau^-$: large branching fraction, but large tt + (heavy flavor) jets background, large jet combinatorics

ttH Statistical Combination

- Combination of 7 and 8 TeV data (CMS) \rightarrow limit at m_H = 125 GeV:
 - Observed: 3.4 × SM cross section
 - Expected (without SM Higgs): 2.7 × SM

Best fit cross section: $\frac{\sigma}{\sigma_{SM}} = 0.74^{+1.34}_{-1.30}$ (\rightarrow still compatible with both 0 and 1)

Channel not yet established, huge potential for Run II

Top Pair Production

Single Top Production

Top + "Something Else"

Top Properties & New Physics

Top Properties & New Physics

Top Mass at the Tevatron

Mass of the Top Quark

- Many of today's analysis methods spear-headed at the Tevatron
 - Examples: in-situ jet energy scale, matrix element method

■ Tevatron combination → still world's most precise top mass

- Detailed understanding of all uncertainties and their correlations
- All results consistent within uncertainties
- Combined uncertainty: 0.5%
- Final word from the Tevatron expected in Winter 2014

Top Mass at the LHC

- LHC has caught up quickly: central top mass value and uncertainty comparable to Tevatron → below 1 GeV uncertainty
- Plenty of statistics, modeling systematics dominate uncertainty
- "World combination" effort started

Top Mass: Alternative Approaches

- Old discussion: which top mass?
 - MC mass in kinematic mass measurement = pole mass?
 - TOP 2013: cease-fire → assumption should be ok up to precisions around 0.5 GeV

Alternative methods being explored

- Mass from pair production cross section: limited precision
- Differential cross section in tt + 1 jet:
 1 GeV precision seems feasible
- B meson p_T: very sensitive to tt modeling
- Average J/ψ + Lepton mass in t → Wb → Lepton J/ψ X:
 1 GeV precision only at HL-LHC
- Kinematic endpoint of m_{lb} distribution

$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1 \text{ jet}}} \frac{\mathsf{d}\sigma_{t\bar{t}+1 \text{ jet}}}{\mathsf{d}\rho_s}$$

with
$$\rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}}}}$$

m₀: reference mass scale s_{tīj}: squared tīj invariant mass

Polarization Observables

- Top spin "easily" accessible: no hadronization \rightarrow spin transferred
- Standard model top production: tt unpolarized, single top 100% polarized
- Expect imprint of BSM physics, e.g. stop or heavy spin-1/2 (T) partner

Spin Correlations

- Polarization in tt production:
 - Tops unpolarized but spins correlated
 - Strength depends on production mechanism (gg vs. qq
) and choice of spin basis

Charge Asymmetry

- SM: small effect (contributes first in NLO)
- Tevatron: tops like to move forward
- LHC: t rapidity distribution wider than \overline{t}

Tevatron tt Inclusive Asymmetry CDF 9.4 fb⁻¹ 16.4 ± 4.7 % Lepton+jets D0 5.4 fb⁻¹ 19.6 ± 6.5 % Lepton qn Asymmetry CDF 9.4 fb⁻¹ 9.4^{+3.2}_{-2.9} % (extr.) Lepton+jets D0 9.7 fb⁻¹ 4.7 ± 2.6 % (|η|<1.5) Dileptons -4.4 ± 3.9 % (extr.) Lepton dn Asymmetry Dileptons 12.3 ± 5.6 % (extr.) Bernreuther & Si, Phys.Rev., D86 (2012) 034026 0 10 15 20 Asymmetry, %

Karlsruhe Institute of Technology

Charge Asymmetry

Flavor-Changing Neutral Currents

Top flavor-changing neutral currents (FCNC) very small in the SM: forbidden at tree level, effective GIM suppression in quantum corrections

FCNCs in tt decays:

- Probes tZq, tγq or tHq couplings
- E.g. B(t→Zq) < 7×10⁻⁴ @ 95% CL

Flavor-Changing Neutral Currents

38

- Top flavor-changing neutral currents (FCNC) very small in the SM: forbidden at tree level, effective GIM suppression in quantum corrections
- FCNCs in tt decays: FCNCs in single top production: Probes tqg or tZq couplings Probes tZq, tyq or tHq couplings E.g. B(t→cg) < 1.6×10⁻⁴ @ 95% CL E.g. B(t→Zq) < 7×10⁻⁴ @ 95% CL 0.22×10⁻³ 0.20 ↓ 0.20 0.18 (350) (350) (300) (300) CMS Preliminary 19.5 fb⁻¹ at $\sqrt{s} = 8$ TeV L dt = 14.2 fb $\sqrt{s} = 8$ TeV **ATLAS** Preliminary [ATLAS-CONF-2013-063] 0.16 Observed 0.14 Expected CMS-PAS-TOP-12-037 250 0.12 Q Q Excluded region 200 u.c 150 u.c ∃×10⁻⁶ 100∟ 100 30 10 20 5 15 25 150 200 250 300 350 m_{Zi} (GeV) B(t→ug) News from the Top 10/09/2013 **Ulrich Husemann** Institut für Experimentelle Kernphysik (IEKP)

Search for Vector-Like Quarks

Heavy vector-like quarks:

- Vector-like: left-/right-handed with symmetric couplings, SU(2)×U(1) singlet or doublet
- Generic signature, e.g. composite Higgs, Little Higgs, extra dimensions, ...
- Rich phenomenology: $T \rightarrow tH, tZ, bW; B \rightarrow tW, bZ, bH$

- Typical limits with full Run I dataset
 - Heavy T mass > 600–850 GeV
 - Heavy B mass > 400–750 GeV

There is Much More...

- ... than I could present in a one-hour talk:
 - More measurements: QCD parameters from cross section, W polarization
 - More associated production: tt
 + bb
 , W, Z, γ
 - More searches: charged Higgs, same sign tops, four tops, ...
 - Boosted topologies & searches for heavy tt and tb resonances
 - Top as a background to Higgs, SUSY, and exotics searches
- Check out the LHC and Tevatron experiments' public material
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic//TopPublicResults
 - http://www-cdf.fnal.gov/physics/new/top/top.html
 - http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

. . .

Summary & Conclusions

- Tevatron: legacy measurements being finalized
- LHC Run I: 6 million tops on tape
 - Mass and cross sections: towards precision top physics
 - Top properties: explore connection to Higgs and BSM
- LHC Run II: the best is yet to come