14th International Workshop on Vertex Detectors Lake Chuzenji, Nikko, Japan, November 7 –11, 2005

Radiation Experience with the CDF Silicon Detectors

Ulrich Husemann

University of Rochester
on behalf of the
CDF Silicon and Radiation Monitoring Groups

The CDF-II Detector at the Tevatron

Tevatron Run II

- Proton-antiproton collider, $\sqrt{s} = 1.96 \text{ TeV}$
- ▶ 36×36 bunches
- Collisions every 396 ns
- Current instantaneous peak luminosity: > 1.5×10³² cm⁻² s⁻¹
- Luminosity goals:
 - Instantaneous: (2–4)×10³² cm⁻² s⁻¹
 - Integrated: 4–8 fb⁻¹
- Two multi-purpose experiments: CDF & D0

Tevatron Performance

World record peak luminosity for hadron colliders: 1.64×10³² cm⁻² s⁻¹ (better than CERN ISR)

Vertex 2005 – U. Husemann: Radiation Experience with the CDF Silicon Detectors

Integrated Luminosity

CDF detectors have "seen" more than 1.4 fb⁻¹ of integrated luminosity in Tevatron Run II

The CDF Detector

Vertex 2005 – U. Husemann: Radiation Experience with the CDF Silicon Detectors

- > 7–8 silicon layers (6 m²)
- 722k readout channels on 5.3k readout chips
- Designed to last for 2–3 fb⁻¹ (SVX), must last for 4–8 fb⁻¹
- Quadrant of inner detectors:

- 7–8 silicon layers (6 m²)
- 722k readout channels on 5.3k readout chips
- Designed to last for 2–3 fb⁻¹ (SVX), must last for 4–8 fb⁻¹
- Quadrant of inner detectors:

SVXII:

- 5 layers of double-sided sensors
- "Workhorse" for 3D tracking
- Secondary vertex trigger (see talk by R. Carosi)

- > 7–8 silicon layers (6 m²)
- 722k readout channels on 5.3k readout chips
- Designed to last for 2–3 fb⁻¹ (SVX), must last for 4–8 fb⁻¹
- Quadrant of inner detectors:

Intermediate Silicon Layer:

- Link SVXII and Central Outer Tracker
- Forward tracking to η=2

- > 7–8 silicon layers (6 m²)
- 722k readout channels on 5.3k readout chips
- Designed to last for 2–3 fb⁻¹ (SVX), must last for 4–8 fb⁻¹
- Quadrant of inner detectors:

L00:

- LHC-like single-sided sensors, readout electronics separated from sensors
- Mounted on beam pipe:
 precision tracking point
 before scattering in detector

Motivation

- Main objectives of CDF Silicon Operations group:
 - Ensure stable and safe operation of silicon detectors
 - Keep silicon detectors alive through Tevatron Run II
 - Record good physics data at high efficiency
- Focus of CDF Radiation Monitoring group:
 - Measure and monitor radiation near silicon detectors and electronics
 - Evaluate radiation damage
- This talk will focus on two aspects of silicon lifetime:
 - Beam-related incidents: single-event upsets, abort kicker "prefire"
 - Assessment of radiation damage: monitoring of bias currents and depletion voltages

Beam-Related Incidents

Beam Incidents

- Tevatron:
 - Most powerful p\(\bar{p}\) collider to date
 - Kinetic energy of beams equivalent of a race car at 200 km/h
- Beam incidents: major concern for longevity of silicon detectors
- Most dangerous incidents:
 - Magnet quench due to beam losses
 - Abort kicker "prefire"

Monitoring the Tevatron Beam

Continuous redundant monitoring of beam parameters by Radiation Monitoring group and Tevatron group:

 Beam losses and abort gaps: Halo counters and beam shower counters (BSC)

- Abort gaps: electron lens
- RF power, etc.
- TevMon: tool for shift crew
 - Automatic evaluation of beam parameters
 - Crew ramps down bias voltages under "dangerous" beam conditions

Aborting the Tevatron Beam

- Monitoring of instantaneous and integrated dose rate by four Beam Loss Monitors (BLM)
- CAMAC logic triggers beam abort if dose rate exceeds 0.12 Gy/s

BLMs: Integrated Dose

Prototype Diamond Detector

Beampipe

- Prototype system: signal currents in diamond detectors
 - Installed October '04
 - Can be used both for beam monitoring and abort

Abort Kicker Prefire

- Tevatron beam abort:
 - Bunch structure: 3×12 bunches, interleaved with "abort gaps"

- 2x5 kicker magnets to abort beam: ramped in abort gaps
- Kicker "prefire": spontaneous ramping of kicker magnets → beam sprayed into CDF silicon detector

Failure of Analog Power Line

- Kicker prefires are rare (18 so far in Run II), but potentially dangerous, mostly for SVX readout chips:
 - All chips in a silicon ladder are daisy-chained in the readout
 - Observe drop in analog current, all chips in chain following compromised chip are lost
 - Conjecture: Failure due to broken silver epoxy glue joint (not yet reproduced in laboratory and test beam)

Power Supply Problems (I)

- Silicon detectors powered by 114 custom power supplies in CAEN SY527 mainframes
- Power supplies mounted in racks in CDF collision hall, controlled remotely by CAENnet bus
- Common failure modes of power supplies:
 - Spontaneous switch-off
 - Loss of CAENnet communication
 - Corrupted read-back of currents/voltages

Power Supply Problems (II)

- Problems are most probably beam-related:
 - Failure rate increases with increasing luminosity
 - Crates in areas with higher radiation dose are more likely to fail
- Short-term fix: reboot ("HockerizeTM") crate CPU
- Working with CAEN to better understand (and possibly fix) the problem

Radiation Measurements

Radiation Monitoring

- Monitoring of radiation damage
 - CDF Radiation Monitoring Group:
 Dose of ionizing radiation in tracking volume (TLDs, I-V curves of PIN diodes) and thermal neutrons (TLDs)
 - Bias currents: continuously monitored during beam time
 - Depletion voltage: scans of signal and noise vs. bias voltage in specialized data-taking runs
- Two main concerns for silicon longevity:
 - Acceptable signal-to-noise during entire Tevatron Run II?
 → study chip noise and increase in sensor bias currents
 - Type inversion in silicon sensors: can we fully deplete the silicon sensors during the entire Tevatron Run II?
 - → study depletion voltage

Radiation Monitoring

- Radiation field measured by >1000 TLDs in tracking volume
- Agreement between bias current measurement and extrapolated TLD measurement: 10%

Radiation Hardness of Electronics

- Silicon readout chip ("SVX3D"):
 - Produced in radiation-hard CMOS process

- SVX Layer 0: chips closest to interaction point, r = 2.5 cm
- Radiation tests with ⁶⁰Co source and 55 MeV protons
- Increase of chip noise after 8 fb⁻¹ (40 kGy):
 17% for innermost SVX layer
- Optical transmitter ("DOIM"):
 - Mounted on "portcards" outside SVX tracking volume, r > 10 cm
 - Radiation-hard to 2 kGy, expect 1.4 kGy in 8 fb⁻¹
 - 8 fb⁻¹: 10% degradation of light level, no change in waveform

Bias Currents

- Linear increase of bias current with luminosity
- Radial dependence of slope: large systematic uncertainties from temperature model

Temperature Model

$$\frac{I_2}{I_1} = \left(\frac{T_2}{T_1}\right)^2 \exp\left[-\frac{E_{\text{gap}}}{2k_B}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right]$$

SVX: temperature sensors (RTDs) mounted on support structure ("bulkhead"): no direct measurement on silicon sensor, need extrapolation

Temperature extrapolation relies on early finite element analysis for sensor temperature: large systematic uncertainties of temperature correction factor (13%)

Lesson learned: good monitoring of sensor temperatures is essential

Signal-to-Noise Ratio

- Limitation: secondary vertex trigger requires S/N > 6–8
- Assuming full depletion of silicon sensors:
 - Chip noise increase linearly with luminosity, 17% at 8 fb⁻¹
 - Shot noise of sensors related to leakage current:

$$Q = 900e \times \sqrt{I_{\text{leakage}}[\mu A]}$$

→ dominant noise source

- Bias current studies: first step towards update of 2003 result
 - More sophisticated analysis
 - Improved understanding of systematics

Depletion Voltage

- Type inversion causes evolution of bias voltage
- SVX: AC-coupled readout
 - Breakdown of capacitors limits depletion voltage
 - Hamamatsu sensors: V_{dep,max} ≈ 170 V
 - Micron sensors: $V_{\text{dep,max}} \approx 60 \text{ V}$
- L00: $V_{\text{dep,max}}$ ≈ 500 V

Predictions based on Hamburg model: $\Delta V_{\text{dep}} \propto \Delta N_{\text{eff}} = N_A + N_C + N_Y$

$$N_A = \Phi \sum_i g_{0,i} \exp[-c_{A,i}(T)t]$$

$$N_C = N_{C,0} (1 - \exp[-c\Phi]) + g_c \Phi$$

$$N_Y = g_Y \Phi \left(1 - \frac{1}{1 + g_Y \Phi c_Y(T)t}\right)$$

Beneficial Annealing

Stable Component

Reverse Annealing

Silicon Longevity Measures

- SVX temperature reduced (Spring 2005):
 - Temperature set-point: –6°C → –8°C → –10°C
 - Reduction of noise, mitigation of reverse annealing
- Silicon detector volume thermally isolated by "baggy"
 - Minimize thermo-cycles of detectors
 - Volume flushed with nitrogen: avoid condensation
- Measure depletion voltage in regular bias scans
 - Compare depletion voltage model (rather large uncertainties) with measurement
 - Straight-line extrapolations of point of type inversion and expected silicon lifetime

Method 1: Signal vs. Bias

- Study collected charge of silicon hits during colliding beams operation
- Find peak of ADC spectrum as a function of bias voltage (fit: Landau & Gaussian)
- Determine V_{dep} as 95% amplitude of sigmoid fit

Method 2: Noise vs. Bias

- Measurement idea: interstrip thermal noise on n side cleared by applying bias voltage
 → depleted detector has lower noise level
- Works only for doublesided sensors (i.e. SVX)
- Study average noise as a function of bias voltage
- Advantage: bias scan
 performed with no beam in
 accelerator
 → no interference with
 data-taking

Comparing Bias Scan Methods

Consistent result of signal and noise methods:

Depletion Voltage: Examples

Straight-line fits to depletion voltages for single ladders: no indication for type inversion so far

Depletion Voltage: SVX Layer 0

Straight-line extrapolation of depletion voltage:

→ Data consistent with lifetime prediction

Type Inversion & Lifetime

- Results presented as mean and RMS of fits for individual ladders
- Lifetime: assume same slope $IdV_{dep}/d\int Ldt I$ after inversion

Summary and Conclusions

- CDF silicon detectors are operated in harsh radiation environment: detailed evaluation of detector longevity
- Beam-related incidents influence silicon operation:
 - Abort kicker prefires: destroyed readout chips
 - Single-event upsets: power supply problems
- Lifetime limited by depletion voltage and noise
- Extrapolations of point of type inversion and lifetime: silicon detectors is expected to live through Tevatron Run II

Further CDF talks at this workshop:

Sebastian Grinstein: CDF Vertex Detector (9 November, 16:00)

Roberto Carosi: Vertexing at CDF (9 November, 16:30)