Physics Seminar DESY Zeuthen, March 28, 2007

The CDF Silicon Detector Design Operations Studies

Ulrich Husemann Yale University

4

Making Use of Silicon Detectors

5

Precision tracking

- Momentum measurement = measurement of track curvature: dominated by larger tracking device, e.g. drift chamber
- Impact parameter = closest distance between track helix and z-axis: need precision tracking point close to primary interaction

B-tagging

- Decays of long-lived *B* mesons ($c \approx 500 \ \mu m$) lead to displaced vertices
- Identification of *b*-jets: displaced secondary vertex (cut on decay length significance)

Double-Tag Event in Layer 00 of CDF Silicon Detector jet Number of Jets = 4 Run 178855 Missing Et = 45 GeV Event 5504617 Muon Pt = 37 GeV X b-tag iet b-tag Missing ET jet Tagged Jet 1: Et = 11 GeV, Phi = 79, L2d = 7 mm agged Jet 2: Et = 38 GeV, Phi = 355, L2d = 1 mm let

Silicon in HEP: A Little History

- Today: Silicon detectors standard tool for precision tracking and vertexing (esp. secondary vertex heavy flavor tagging)
- First particle physics application of silicon detectors: high-rate fixed target experiments for charm physics (esp. D meson lifetimes)
 - CERN NA11 (ACCMOR Collaboration): ~1983
 - Fermilab E691 (Tagged Photon Spectrometer): ~1985
- Silicon microstrip vertex trackers at electron-positron colliders (1990s)
 - All LEP detectors, Mark-II at SLC
 - B factories

- First application in a hadron collider (CERN Spps): UA2 (1987)
 - Single cylinder of silicon pads $(8.7 \times 40 \text{ mm}^2)$: 60 cm long, 14.7 cm radius, 1 m² of sensor surface, mounted directly on the beam pipe

Silicon Detector in CDF Run I a

7

- First ideas in 1983
- Concept of silicon detectors at hadron colliders controversial within CDF (e.g.: occupancy of inner layers too high?)
- First design: SVX (operated 1992–1993)
 - 2 barrels with 4 layers each, 51.1 cm long, radii: 3–8 cm
 - Single sided sensors (60 µm pitch), DC-coupled readout
 - Short lifetime mainly due to radiation damage to the readout chip: increased occupancy, reduced efficiency

But Nevertheless...

8

PHYSICAL REVIEW D

VOLUME 50, NUMBER 5

1 SEPTEMBER 1994

ARTICLES

Evidence for top quark production in $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV

F. Abe,¹³ M. G. Albrow,⁷ S. R. Amendolia,²³ D. Amidei,¹⁶ J. Antos,²⁸ C. Anway-Wiese,⁴
G. Apollinari,²⁶ H. Areti,⁷ P. Auchincloss,²⁵ M. Austern,¹⁴ F. Azfar,²¹ P. Azzi,²⁰ N. Bacchetta,¹⁸
W. Badgett,¹⁶ M. W. Bailey,²⁴ J. Bao,³⁴ P. de Barbaro,²⁵ A. Barbaro-Galtieri,¹⁴ V. E. Barnes,²⁴ B. A. Barnett,¹² P. Bartalini,²³ G. Bauer,¹⁵ T. Baumann,⁹ F. Bedeschi,²³ S. Behrends,² S. Belforte,²³ G. Bellettini,²³ J. Benljamin,³² J. Benlloch,¹⁵ J. Bensinger,² D. Benton,²¹ A. Beretvas,⁷ J. P. Berge,⁷ S. Bertolucci,⁸ A. Bhatti,²⁶ K. Biery,¹¹ M. Binkley,⁷ F. Bird,²⁹ D. Bisello,²⁰ R. E. Blair,¹
C. Blocker,²⁹ A. Bodek,²⁵ V. Bolognesi,²³ D. Bortoletto,²⁴ C. Boswell,¹² T. Boulos,¹⁴ G. Brandenburg,⁹
E. Buckley-Geer,⁷ H. S. Budd,²⁵ K. Burkett,¹⁶ G. Busetto,²⁰ A. Byon-Wagner,⁷ K. L. Byrum,¹ C. Campagnari,⁷ M. Campbell,¹⁶ A. Caner,⁷ W. Carithers,¹⁴ D. Carlsmith,³³ A. Castro,²⁰ Y. Cen,²¹ F. Cervelli,²³ J. Chapman,¹⁶ M.-T. Cheng,²⁸ G. Chiarelli,⁸ T. Chikamatsu,³¹ S. Cihangir,⁷ A. G. Clark,²³ M. Cobal,²³ M. Contreras,⁵ J. Conway,²⁷ J. Cooper,⁷ M. Cordelli,⁸ D. P. Coupal,²⁰ D. Crane,⁷ J. D. Cunningham,²
T. Daniels,¹⁵ F. DeJongh,⁷ S. Delchamps,⁷ S. Dell'Agnello,²³ M. Dell'Orso,²³ L. Demortier,²⁶ B. Denby,²³ M. Deninno,³ P. F. Derwent,¹⁶ T. Devlin,²⁷ M. Dickson,²⁵ S. Donati,²³ R. B. Drucker,¹⁴ A. Dunn,¹⁶ K. Einsweiler,¹⁴ J. E. Elias,⁷ R. Ely,¹⁴ E. Engels, Jr.,²² S. Eno,⁵ D. Errede,¹⁰ S. Errede,¹⁰ Q. Fan,²⁵ B. Farhat,¹⁵ I. Fiori,³ B. Flaugher,⁷ G. W. Foster,⁷ M. Franklin,⁹ M. Frautschi,¹⁸ J. Freeman,⁷ J. Friedman,¹⁵ H. Frisch,⁵ A. Fry,²⁹ T. A. Fuess,¹ Y. Fukui,¹³ S. Funaki,³¹
G. Gagliardi,²³ S. Galeotti,²³ M. Gallinaro,⁰² A. F. Garfinkel,²⁴ S. Geer,⁷ D. W. Gerdes,¹⁶ P. Giannetti,²³ N. Giokaris,²⁶ P. Giromini,⁸ L. Gladney,²¹ D. Glenzinski,¹² M. Gol

... The Top!

time, temperature, bias voltage)

Silicon Detector in CDF Run I b

- Second attempt: SVX' (operated 1993–1996)
 - Mechanical design similar to SVX, slightly smaller inner radius (2.8 cm)
 - Radiation hard readout chip
 - AC-coupled readout with FOXFET (Field Oxide FET) biasing
 - Signal-to-noise ratio (SNR) decreases faster than expected (attributed to FOXFET biasing)
 - Reduction of SNR partly compensated by changes in detector operation (integration time, temperature, bias voltage)

Run I: Lessons Learnt

- Secondary vertex *b*-tagging:
 - Efficiency drops quickly for SNR smaller than approx. 3
 - But: top quark discovery with data taken with SNR of 6 → 3
- Detector resolution:
 - Great impact parameter (SVX' only: 35 µm, 46 µm including beam spot)
 - Poor p_T resolution: short lever arm, radii: 3–8 cm
 → additional layer at larger radius (~20 cm)
- Some limitations can be overcome by clever software (and people)

For more details on the history of Silicon detectors in CDF (and CMS):

J. Incandela, Life on the Critical Path

(talk given at the 6th International "Hiroshima" Symposium, Carmel, CA, September 11–15, 2006)

Tevatron Run II: 2001–2009

- Proton-antiproton collider, $\sqrt{s} = 1.96$ TeV
- 36×36 bunches
- Collisions every 396 ns
- Record instantaneous peak luminosity:
 292 µb s⁻¹ (10³⁰ cm⁻² s⁻¹)
- Luminosity goals:
 - Instantaneous: 300–400 µb s⁻¹

- Integrated: 6–8 fb⁻¹ until 2009
- Two multi-purpose experiments: CDF & DØ

Integrated Luminosity

- Tevatron continues to perform very well
 - More than 2.6 fb⁻¹ delivered
 - More than 2.1 fb⁻¹ recorded by CDF

The CDF Detector

CDF Trigger Overview

- Level 1 Trigger:
 - Synchronous hardware trigger
 - Input rate: 1.7 MHz
- Level 2 Trigger:
 - Hardware & software triggers
 - Input rate: up to 35 kHz
- Level 3 Trigger:
 - PC farm
 - Input rate: up to 1 kHz
- Special role of Silicon detector due to Silicon Vertex Trigger (SVT)
 - Silicon information used in SVT, i.e. at Level 2
 - → must be read out at Level 1

Silicon Detectors in CDF

- 7–8 silicon layers (6 m²)
- 722,432 readout channels on 5,456 readout chips
- Three sub-detectors:
 - SVX II
 - Intermediate Silicon Layers (ISL)
 - Layer 00 (L00)
- Purpose:
 - Precision tracking
 - Reconstruction of primary and secondary vertices

SVX II: The Core Detector

- Mechanical structure:
 3 barrels with 6 bulkheads,
 12 wedges each (1m long)
- 5 layers of double-sided silicon sensors at radii of 2.5–10.6 cm
 - Layers 0, 1, 3 (Hamamatsu): axial and 90° strips
 - Layers 2 and 4 (Micron): axial and 1.2° stereo strips
 - Strip pitch: 60–140 µm
 - AC-coupled readout: microdischarges limit bias voltage to 170 V (Hamamatsu) and 80 V (Micron)

SVX and SVT

- Silicon Vertex Trigger (SVT):
 - Fast track reconstruction and cut on impact parameter at trigger level
 - Essential for trigger on hadronic *B* decays
- Requirements for using SVX II in the SVT:
 - Easy geometrical mapping: symmetric 12-fold wedge structure
 - Full SVX II data available at L2: fast readout
 - Tight alignment constraints: SVX II must be parallel to the beam to within 100 μrad

Wedge

ISL: The Extension

J. Goldstein: "Don't mess with my detector!"

- One central layer (lηl < 1): link tracks from SVX II to wire chamber
- Two forward layers (1 < lηl < 2): tracking at large pseudorapidities
- Strip pitch: 112 µm

ISL and Forward Tracking

- Traditional "Outside-In" tracking in CDF: COT tracks extrapolated to SVX II
- Silicon stand-alone tracking: poor momentum resolution
- New "Backward" tracking:
 - Make full use of ISL acceptance up to lηl < 2
 - Seed Silicon tracking from inner axial superlayers of the COT

Material Budget and Longevity

- Poor impact parameter resolution for low-p_T tracks
- Affects also high-p_T physics: need low-p_T tracks for btagging
- LHC-style radiation-hard silicon not yet available when SVX II was designed
 - Inner layers may die of radiation damage
- Solution: Layer 00
 - New low-mass layer directly on the beam pipe
 - Use radiation-hard silicon

Physics Seminar DESY Zeuthen, March 28, 2007 – U. Husemann: The CDF Silicon Detector

20

L00: The Beam Pipe Layer

- Material budget:
 - Goal: 0.01 X₀ (achieved)
 - Below r = 2 cm, 0.01 X_0 of additional material does not matter
- Material and radiation:
 - Remove readout electronics from tracking volume
 - Transmit analog signals to chips
- Single-sided "LHC style" sensors:
 - Non-oxygenated (Hamamatsu, SGS Thomson)
 - Oxygenated (Micron)
- Actively cooled support structure
- Strip pitch: 25 µm, every second strip read out

Insertion of L00: 300 µm clearance!

- Discovery of B_s
 oscillations:
 Phys. Rev. Lett. 97
 (2006) 242003
- Layer 00 makes the difference: uncertainty on oscillation amplitude reduced by factor of >2 \rightarrow 5 σ discovery instead of 3 σ evidence
- Achieved decay time resolution of $\sigma_t = 90$ fs (1/4 of measured oscillation period)
- Resolution corresponds to approx. 27 µm decay length resolution

Silicon DAQ: A Simplified View

- Main components:
 - Silicon Readout Controller (SRC): "brain" of the system
 - Fiber Interface Board (FIB): control signals and optical readout
 - Portcard: chip commands and optical transmitters (DOIMs)

SVX3D Readout Chip

- Integrated analog front-end and digital back-end
- Fast: capable of running at 132 ns clock rates
- Deadtimeless: can collect charge and digitize simultaneously
- Dynamic pedestal subtraction
 - On-chip subtraction of common mode noise (defined as number of ADC counts measured in 31st lowest channel)
- On-chip sparsification
 - Removes channels below programmable threshold
 - Reduces data rate and readout time
- Honeywell radiation-hard CMOS 0.8 µm process, irradiated with:
 - 40 kGy with 60Co source: 17% chip noise increase
 - 150 kGy with 55 MeV Proton source

53 MByte/s Data Out

Cooling & Interlocks

- Readout electronics develops
 3.5 kW of heat
- Low temperatures are beneficial for Silicon sensors:
 - Reduction of thermal noise
 - Mitigation of radiation damage
- Solution: operate Silicon detectors at –10 °C (SVX II/L00) and +6 °C (ISL, electronics)
- Protect Silicon by interlock system based on Programmable Logic Controller
 - Monitor several 100 process parameters: temperatures, pressures, flows, dew points, chiller status
 - Trip chillers & power supplies in unsafe situations

Beam Abort System

- Monitoring of instantaneous and integrated dose rate by four Beam Loss Monitors (BLM)
- CAMAC logic triggers beam abort if dose rate > 0.12 Gy/s
- Current time resolution (210 µs = 10 Tevatron revolutions) too slow for some beam incidents
- BLM/diamond upgrade (currently being commissioned)
 - Faster VME electronics:
 21 µs = 1 revolution
 - Smaller & closer to Silicon real estate: polycrystalline CVD diamond detectors

BLM

New BLM

Beam pipe

BLM

Expect the Unexpected

29

Timeline:

- R&D: 4 years
- Production & Installation: 1 year
- Commissioning: 1.5 years
- Various problems encountered initially:
 - Power supply burn-out
 - Blocked cooling lines in ISL
 - Noise pickup on L00
 - Wirebond resonance problems
 - Beam incidents
- All of the above problems have been addressed: detector is in good shape

Wirebond Resonances

30

- Symptom: mysterious loss of *z* sides
- Reason (reproduced on test bench):
 - Wires in jumper to connect *r*-φ and *z* sides are perpendicular to magnetic field → Lorentz force
 - Highest current during readout
 - Resonance frequency around 20 kHz
- Preventing further losses:
 - Dedicated VME board to measure Δt between subsequent readout commands \rightarrow stop data-taking if more than 13 readout commands with the same Δt occur
 - Limit L1 trigger rate to < 35 kHz
- ATLAS and CMS learnt the lesson:
 - Resonance protection board (ATLAS)
 - Potted wires (CMS)

Maintenance is a Challenge

- A complex system...
 - 722,000 channels
 - 5,400 chips
 - 135 VME boards in 17 crates
 - 114 power supplies in 16 crates
 - Cooling & interlocks
 - Lots of cables
 - ... and not very accessible:
 - Power supplies and part of DAQ in collision hall
 - Detector and portcards: inaccessible

No Ladder Left Behind*

- Maintain constant high efficiency due to aggressive "No Ladder Left Behind" policy:
 - Vigilant monitoring: spot problems early (digital errors, ADC spectra, ...)
 - Detailed logging of problems occuring
 - "Quiet time studies":
 - Diagnose problems \rightarrow fix or mitigate
 - Attempts to revive dead ladders
 - Collision hall access between stores
 - Diagnosis: cable swaps, light level measurements, ...
 - Swap DAQ boards, power supplies, optical receivers, …
- Extremely successful, but personpower intensive: need 4–6 FTE

*coined by R. Wallny, UCLA, see No Child Left Behind Act of 2001 (US Public Law 107-110)

- Very stable efficiency after commissioning, average: 95%
- Define efficiency as close as possible to standard CDF tracking:
 - Denominator: muons from $J/\psi \rightarrow \mu\mu$ with muon ID and COT track which cross at least 3 layers of SVX II
 - Numerator: Silicon added to COT track by standard pattern recognition, at least 3 layers with hits in SVX II/L00

There are Problems, too...

- Radiation-related:
 - Single-event upsets in collision hall DAQ boards (approx. 1 per day)
 - FPGA burnout (1–2 per year)
 - Power supply failures: corrupted readback of voltages and currents, spontaneous switch-offs, loss of CAENet communication
- Cooling and interlocks: chiller wear and tear, air leaks, frozen cooling lines, humidity sensor problems, ...
- Beam incidents:
 - 2–3 MJ of beam energy: spray of secondary particles can cause significant damage
 - Examples: magnet quenches, RF station loss, beamseparator sparks, spontaneous ramping of abort kicker magnets

Physics Seminar DESY Zeuthen, March 28, 2007 – U. Husemann: The CDF Silicon Detector

38

Lessons Learnt

[...] because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – the ones we don't know we don't know. (D. Rumsfeld, 2002) Expect surprises during commission and operation

- Keep expertise around, good documentation
- Eliminate single points of failure: what can break will break
- Spares, spares, spares...
- Don't forget infrastructure: cables, power supplies, cooling, ...
- It's a hadron collider, dude! Don't underestimate radiation-induced failures and beam incidents

Quo Vadis, CDF?

- Tevatron scheduled to run through FY 2009
- Planning for the future is taking place now
- Higher luminosities: challenge for detector & trigger
 - Parallelize Silicon readout: additional readout crate (Oct 2006)
 - Optimize chip working point, e.g. digitization thresholds
- Fewer people: challenge for detector operations
 - Shift crew reduced from 4 to 3 persons (Dec 2006)
 - Automation of standard procedures and safety systems

CDF Silicon Workshop 2006

May 2006: Silicon workshop at UC Santa Barbara

Goals:

- Education of Silicon group
- Knowledge transfer from the "old guys"
- Attract new people for the Silicon group
- Comprehensive program:
 - Silicon detectors of the past, present, and future
 - All about CDF Silicon
 - Whale watching, wine...
 - See: <u>http://b0sili01.fnal.gov/</u> si_workshop2006/

Silicon Detector Longevity

- Performance of key components decreases with irradiation, main concern: Layer 0 of SVXII
 - Noise increase
 - Bulk damage of sensors: increased leakage currents & capacitance
 - Electronics: chip damage, capacitance
- Signal degradation
 - Charge trapping in crystal defects: decreased charge collection efficiency
 - Bias voltage limited: underdepletion of sensors

Component	Performance after 8 fb ⁻¹
Optical Transmitters	10% degradation of light level, no change in wave form
SVX3D Readout Chip	17% noise increase
Silicon Sensors	This talk

Signal-to-Noise Ratio

- Two main sources of noise:
 - Sensor shot noise (I_{leak} = leakage current): $Q_{\text{shot}} = 900 e^{-1} \sqrt{I_{\text{leak}}} (\mu \text{A})$
 - Chip noise (C_{chip} = chip capacitance): $Q_{chip} = f_1(\Phi) + f_2(\Phi) C_{chip}$ Test beam data: 17% increase of chip noise after 8 fb⁻¹

Direct measurement from data:

CDF II Preliminary

- Dataset: first 1.7 fb⁻¹ (164 pb⁻¹ from commissioning period excluded)
- Signal: path-length corrected charge sum of clusters using hits on tracks (*J/ψ* data)
- Noise: single-channel noise (calibration data)

square-root increase with Integrated Luminosity (fb⁻¹) luminosity Physics Seminar DESY Zeuthen, March 28, 2007 – U. Husemann: The CDF Silicon Detector

Signal and Noise Models

CDF II Preliminary

- Signal definition: most probably value of fit to ADC spectrum (Landau distribution convoluted with Gaussian)
- Data suggest linear decrease with **luminosity**

- Noise definition: mean strip noise obtained from calibration runs (taken every 2 weeks)
- Assumption: shot noise dominant source of noise:

46

SNR & Lifetime Projections

- Fit with signal & noise model, large extrapolation to 8 fb⁻¹
 - Limit I: *SNR* = 8 (SVT efficiency)
 - Limit II: SNR = 6–3 (*b*-tagging)
- Bottom line: detector lifetime seems not to be limited by SNR degradation
- More definite prediction with more data and refined modeling
- Cross-check: SNR projection from bias current measurement consistent with direct measurement

Depletion Voltage

- Due to radiation damage: evolution of voltage needed to fully deplete sensor
 - Effective number of charge carriers N_{eff} reduced until type inversion: decreasing depletion voltage
 - Increasing depletion voltage after type inversion, eventually reaching maximum allowed bias voltage

Depletion Voltage Evolution in SVX II Layer 0

S. Worm, Lifetime of the CDF Run II Silicon, VERTEX 2003

Predictions: modified Hamburg model: $\Delta V_{dep} \propto \Delta N_{eff} = N_A + N_C + N_Y$

$$N_{A} = \Phi \sum_{i} g_{0,i} \exp[-c_{A,i}(T)t]$$

$$N_{C} = N_{C,0} (1 - \exp[-c\Phi]) + g_{c}\Phi$$

$$N_{Y} = g_{Y}\Phi \left(1 - \frac{1}{1 + g_{Y}\Phi c_{Y}(T)t}\right)$$

Beneficial Annealing

Stable Component

Reverse Annealing

Physics Seminar DESY Zeuthen, March 28, 2007 – U. Husemann: The CDF Silicon Detector

48

Method 1: Signal vs. Bias

- Dedicated data-taking runs ("Signal Bias Scans")
 - Study collected charge of silicon hits from good tracks during colliding beams operation
 - Find peak of ADC spectrum as a function of bias voltage (fit: Landau Second Gaussian)
 - Determine V_{dep} as 95% amplitude of sigmoid fit
- Works for entire detector, but consumes valuable beam time

49

Method 2: Noise vs. Bias

- * "Noise Bias Scans": study average noise as a function of bias voltage
- Measurement idea: inter-strip thermal noise on *n* side cleared by applying bias voltage
 → depleted detector has lower noise level
- Works only for double-sided sensors (i.e. SVX II and ISL)
- Advantage: does not require beam in accelerator
 → no interference with datataking
- Expect problems with this method after type inversion (no p stops on p⁺ side)

Lifetime Projection for Layer 0

- SVX II Layer 0: first layer to hit maximum bias voltage
- Currently: Layer 0 close to type inversion
- Data follows optimistic scenario: L0 will outlast CDF Run II

Lifetime Projection for Layer 00

Layer 00: very close to the beam, but built from "radiation-hard" silicon

Evolution of depletion voltage:

- Type inversion around 1 fb⁻¹ (except oxygenated sensors)
- Minimum depletion voltage around 35 V
- Very consistent increase after type inversion
- Layer 00 will outlast CDF Run II

Summary

- Silicon detectors in CDF: SVX II, ISL, and L00
 - Large and complex system: 6 m² of sensors, 722k channels
 - Very stable performance after long commissioning period
 - Essential for CDF's physics program
- LHC detectors have profited (and will further profit) from Tevatron experience, especially for Silicon detectors
- The CDF Silicon group is very active:
 - Detector maintenance and day-to-day operations
 - Detailed studies of performance and longevity
- Tevatron runs until 2009: CDF will go for the Higgs, and the Silicon is ready to go!

