

Enabling Grids for E-sciencE

EGEE

The e-Science Production Grid (in Europe)

Torsten Antoni

Institut für wissenschaftliches Rechnen Forschungszentrum Karlsruhe

www.eu-egee.org

The rationale for Grids

Computing intensive science

Enabling Grids for E-sciencE

 Science is becoming increasingly digital and needs to deal with increasing amounts of data

- Simulations get ever more detailed
 - Nanotechnology design of new materials from the molecular scale
 - Modelling and predicting complex systems (weather forecasting, river floods, earthquake)
 - Decoding the human genome
- Experimental Science uses ever more sophisticated sensors to make precise measurements
 - → Need high statistics
 - → Huge amounts of data
 - → Serves user communities around the world

- Integrating computing power and data storage capacities at major computer centres
- Providing seamless access to computing resources distributed around the globe

- → More effective and seamless collaboration of dispersed communities, both scientific and commercial
- → Ability to run large-scale applications comprising thousands of computers, for wide range of applications

- Distributed applications already exist, but they tend to be specialized systems intended for a single purpose or user group
- Grids go further and take into account:
 - -Different kinds of *resources*
 - Not always the same hardware, data and applications
 - -Different kinds of *interactions*
 - User groups or applications want to interact with Grids in different ways
 - -Dynamic nature
 - Resources and users added/removed/changed frequently

Virtualization & Sharing

Enabling Grids for E-science

- Virtual Organizations
 - People from different organizations but with common goals get together to solve their problems in a cooperative way – similar to a HEP experiment
- Virtualized shared computing resources
 - Members of VOs have access to computing resources outside their home institutions. Resource providers typically have a contract/MoU with the VO, not with the VO members
- Virtualized shared data resources
 - Similar to computing resources
- Other resources may be shared and virtualized as well:
 - Instruments, sensors, even people

Virtualization of resources is needed to abstract from their heterogeneity

EGEE

Grids in Europe

Great investment in developing Grid technology

Sample of National Grid projects:

- Austrian Grid Initiative
- DutchGrid
- France: Grid'5000; ACI Grid
- Germany: D-Grid; Unicore
- Greece: HellasGrid
- Grid Ireland
- Italy: INFNGrid; GRID.IT
- NorduGrid
- UK e-Science: National Grid Service;
 OMII; GridPP

The EGEE project

Enabling Grids for E-sciencE

Objectives

- consistent, robust and secure service grid infrastructure for many applications
- improving and maintaining the middleware
- attracting new resources and users from industry as well as science

Structure

- 71 leading institutions in 27 countries, federated in regional Grids
- leveraging national and regional grid activities worldwide
- funded by the EU with ~32 M Euros for first 2 years starting 1st April 2004

The EGEE project

Enabling Grids for E-sciencE

Objectives

- Large-scale, production-quality infrastructure for e-Science
 - leveraging national and regional grid activities worldwide
 - consistent, robust and secure
- improving and maintaining the middleware
- attracting new resources and users from industry as well as science

EGEE

- 1st April 2004 31 March 2006
- 71 leading institutions in 27 countries, federated in regional Grids

EGEE-II

- Start 1 April 2006 (for 2 years)
- Expanded consortium
 - > 90 partners in 32 countries (also non-European partners)
 - Related projects, incl.
 - BalticGrid
 - SEE-GRID
 - EUMedGrid
 - EUChinaGrid
 - EELA

Infrastructure

EGEE Infrastructure

EGEE services

Enabling Grids for E-sciencE

Production service

- Based on the LCG-2 service
- With new resource centres and new applications encouraged to participate
- Stable, well-supported infrastructure, running only well-tested and reliable middleware

Pre-production service

- Run in parallel with the production service (restricted nr of sites)
- First deployment of new versions of the middleware
- Applications test-bed

GILDA testbed

- https://gilda.ct.infn.it/testbed.html
- Complete suite of Grid elements and applications
 - Testbed, CA, VO, monitoring
- Everyone can register and use GILDA for training and testing

Middleware

Grid middleware

 The Grid relies on advanced software, called middleware, which interfaces between resources and the applications

The GRID middleware:

- Finds convenient places for the application to be run
- Optimises use of resources
- Organises efficient access to data
- Deals with authentication to the different sites that are used
- Runs the job & monitors progress
- Recovers from problems
- Transfers the result back to the user

Grid Topology and Services

EGEE Middleware: gLite

- gLite
 - Exploit experience and existing components from VDT (Condor, Globus), EDG/LCG, AliEn, and others

- Develop a lightweight stack of generic middleware useful to EGEE applications (HEP and Biomedics are pilot applications).
 - Should eventually deploy dynamically (e.g. as a globus job)
 - Pluggable components cater for different implementations
- Focus is on re-engineering and hardening

Software stack and origin of services in release 1 (simplified)

Enabling Grids for E-sciencE

- Computing Element
 - Gatekeeper (Globus)
 - Condor-C (Condor)
 - CE Monitor (EGEE)
 - Local batch system (PBS, LSF, Condor)
- Workload Management
 - WMS (EDG)
 - Logging and bookkeeping (EDG)
 - Condor-C (Condor)
- Information and Monitoring
 - R-GMA (EDG)

- Storage Element
 - gLite-I/O (AliEn)
 - Reliable File Transfer (EGEE)
 - GridFTP (Globus)
 - SRM: Castor (CERN), dCache (FNAL, DESY), other SRMs
- Catalog
 - File/Replica & Metadata Catalogs (EGEE)
- Security
 - GSI (Globus)
 - VOMS (DataTAG/EDG)
 - Authentication for C and Java based (web) services (EDG)

Now doing rigorous scalability and performance tests on pre-production service

gLite Key Concepts

- Centered around VOs
 - It's ultimately the VO who gets resources allocated and needs to decide how to best use them (share them among the VO users)
- Distinguish between *infrastructure* and *VO* services
- Infrastructure services
 - Operated and trusted by the resource administrator
 - Implement site policies
 - Including what share of the resources are allocated to a VO
 - Provide the required security, auditing, and accounting
 - Grid and standard services
 - E.g. batch system, gatekeeper, gridFTP, ...

gLite Key Concepts

Enabling Grids for E-sciencE

VO services

- Implement intra-VO policies
 - Scheduling, priorities, etc.
- Managed and operated by a VO
 - Typically by sites on behalf of VOs
 - A service instance may serve multiple VOs
- Currently mostly higher level services
 - Resource brokers, catalogs, ...
- There is the need of deploying VO services closer to the resource
 - Better information about the resource and better control about the resource
 - Downside: more and more services to be deployed at the sites

Middleware Challenges: Security

- In principle, Grid security requirements are not different from standard security requirements
 - Users want their data and application secured (including data transfer)
 - Sites want access to their resources secured and audited
- What makes it challenging are the different administrative domains interconnected on the Grid and the need to establish mutual trust

Security: Basic Concepts

- Grid security is based on X.509 PKI infrastructure
 - Certificate Authorities (CA) issue (long lived) certificates identifying individuals (much like a passport)
 - Trust between CAs and sites is established (offline)
 - User identification is done by using (short lived) proxies of their certificates
- Proxies can
 - Be delegated to a service such that it can act on the user's behalf
 - Include additional attributes (like VO information via the VO Membership Service VOMS)
 - Be stored in an external proxy store (myProxy)
 - Be renewed (in case they are about to expire)

Middleware Challenges: Data Management

Heterogeneity

- Data is stored on different storage systems using different access technologies
- Need common interface to storage resources
 - Storage Resource Manager (SRM)

Distribution

- Data is stored in different locations in most cases there is no shared file system or common namespace
- Data needs to be moved between different locations

- Need to keep track where data is stored
 - File and Replica Catalogs
- Need scheduled, reliable file transfer
 - File transfer and placement services

Different Administrative Domains

- Data is stored at places you would normally have no access to
- Security and auditing implications
- Need a common security model
 - ACLs enforcement based on Grid identities – DNs

Data Management Architecture

Middleware Challenges: Workload Management

- Computational tasks of thousands of users need to be scheduled on the available Grid resources
- Grid (Meta)Scheduling consists of:
 - Resource Discovery/Brokering
 - Find suitable resources.
 - Matchmaking
 - Assign a job to a resource that satisfies job requirements
 - Job execution
 - Reliably execute the jobs and retrieve output
 - Deal with error management
- Job execution requires to find the "right" Computing Element (computing resource)
 - with maybe boundary conditions (architecture, software installed, data accessible, etc.)

Workload Management Architecture

Applications

Steps for "Grid-enabling" applications I

- New user communities (via dissemination and training events)
 - Possibility to explore benefits of EGEE via GILDA (training and dissemination testbed)
- Negotiation process
 - EGAAP (EGEE Generic Applications Advisory Panel) approves new applications
 - MoU to understand application requirements in detail
 - OAG (Operations/Applications Group) negotiates resource allocation
 - Application becomes part of already existing VO or new VO is formed

Steps for "Grid-enabling" applications II

Enabling Grids for E-science

- Tools to easily access Grid resources through high level Grid middleware (gLite)
 - VO management (VOMS etc.)
 - Workload management
 - Data management
 - Information and monitoring
- Application can
 - interface directly to gLite

or

 use higher level services such as portals, application specific workflow systems etc.

EGEE Applications

- >20 applications from 7 domains
 - High Energy Physics
 - Biomedicine
 - Earth Sciences
 - Computational Chemistry
 - Astronomy
 - Geo-Physics
 - Financial Simulation
- Further applications in evaluation

Applications now moving from testing to routine and daily usage

User information & support

- User education
- Simple access to a broad range of information
- Round the clock support for the users of grid data, compute, networking and VO specific services
- Application integration and support

User information & support

Enabling Grids for E-sciencE

- More than 170 training events and summer schools across many countries
 - >2000 people trained induction; application developer; advanced; retreats
 - Material archive online with ~250 presentations

- Public and technical websites
- Dissemination material
- constantly evolving to expand information and keep it up to date
- 4 conferences organized (~ 460 @ Pisa)

Next conference: September 2006 in Geneva ~600 participants

User & Operations Support

EGEE-II

- EGEE-II proposal submitted to the EU
 - On 8 September 2005
 - Start 1 April 2006
- Natural continuation of EGEE
 - Emphasis on providing an infrastructure for e-Science
 - → increased support for applications
 - → increased multidisciplinary Grid infrastructure
 - → more involvement from Industry
 - Expanded consortium
 - > 90 partners in 32 countries (Non-European partners in USA, Korea and Taiwan)
 - related projects
- world-wide Grid infrastructure
- → increased international collaboration

EGEE → EGEE-II

Enabling Grids for E-sciencE

Aim of EGEE:

"to establish a seamless European Grid infrastructure for the support of the European Research Area (ERA)"

Achievements of EGEE:

- Exceeding almost all final goals
- Scope expanded beyond Europe

Transition EGEE → EGEE-II

- EGEE conceived as first two years of four-year plan
- Services continuously available

• EGEE-II start:

- → Full capacity from day one
- → Large-scale, production-quality infrastructure
- → Supporting a wide range of applications
- → Staff with extensive knowledge of Grid technology

EGEE-II Mission

Enabling Grids for E-sciencE

Infrastructure

- Manage and operate production Grid for European Research Area
- Interoperate with e-Infrastructure projects around the globe
- Contribute to Grid standardisation efforts
- Support applications from diverse communities
 - High Energy Physics
 - Biomedicine
 - Earth Sciences
 - Astrophysics
 - Computational Chemistry
 - Fusion
 - Geophysics (incl. industrial application EGEODE)
 - Finance, Multimedia
 - - ...
- Industry
 - Reinforce links with the full spectrum of interested industrial partners
- + Disseminate knowledge about the Grid through training
- + Prepare for sustainable European Grid Infrastructure

Expertise & Resources

- More than 90 partners
- 32 countries
- 12 federations
- → Major and national Grid projects in Europe, USA, Asia

- + 27 countries through related projects:
 - BalticGrid
 - SEE-GRID
 - EUMedGrid
 - EUChinaGrid
 - EELA

Related Projects

Grid Interoperability

- We currently see different flavors of Grids deployed worldwide
 - Because of application needs, legacy constraints, funding, etc.
 - Diversity is essential to find best solutions for standardization
- Grid computing standards are only being defined
 - WS-*, GGF, and others
 - A production infrastructure cannot be an early adopter of quickly changing standards
- Many applications need to operate on more than one Grid infrastructure
 - Pragmatic approach to interoperability is key
 - Provides valuable input to standardization process
- EGEE is highly interested in interoperability
 - Efforts ongoing with OSG, ARC, NAREGI, and others

Interoperability and Interoperation

- Successful demonstration of cross job submission with Open Science Grid sites
 - Works in both directions
 - Based on BDII, GIP (→ VDT)
 - Small changes to allow correct app environment to be set up
 - Sustainable not just a one-off demonstration
- Inter-operation
 - Can we share operational oversight?
 - Gain more coverage (2 shifts/day)
 - Share monitoring tools and experience (SFT)
 - Common application environment tests
 - Strong interest from both sides
 - Follow up in operations workshops

- EGEE-II started on April 1st
 - Smooth transition to continuation project
 - Further support for more application domains
 - Increased number of partners from US and AP
- Unified EGEE middleware distribution gLite 3.0 ready in Spring 2006
- Reinforce interoperability work
 - Continue close collaborations with OSG
 - Interoperation aspect
 - Very interested in seeing common usage of both infrastructures going beyond HEP applications
 - Explore potential synergies in interoperability with supercomputing Grids (TeraGrid and DEISA)
 - Common usage and contributions to VDT very important
 - Multi-Grids interoperability
- Work towards a long-term sustainable Grid infrastructure in Europe

A look to the Future

- We have a window of opportunity to move grids from research to production, as networks did a few years ago
- Success will lead to the adoption of grid technology as the main computing infrastructure for science
- The work of EGEE and related grid projects will be critical in establishing multi-disciplinary production grids with a global scope
- Closer industrial involvement is actively sought
- If we succeed then the potential return to international scientific communities will be enormous and open the way for commercial and industrial applications

EGEE Website

http://www.eu-egee.org

How to join
 http://public.eu-egee.org/join/

EGEE Project Office
 projectoffice@eu-egee.org

