

bwHPC Symposium 2017

High precision predictions for particle collisions at the Large Hadron Collider

CMS Experiment at the LHC, CERN Data recorded: 2015-Jun-03 08:48:32.279552 GMT Run / Event / LS: 246908 / 77874559 / 86

K. Rabbertz Institut für Experimentelle Teilchenphysik (ETP) KIT K. Rabbertz Tübingen, Germany, 04.10.2017 bwHPC

CERN & The Large Hadron Collider

ATLAS

AS

Four large experiments in 27 km long tunnel observe particle collisions at highest man-made energies ever

MS

CMS

Lake Geneva

LHCb

LHCh

Mountains

ALICE

Jura

<u>Ĉ</u>ÉRN

The CMS Detector

Look inside Matter

View perpendicular to particle beams

Theoretical sketch of a quark-quark collision

R. Feynman (Nobel-Prize 1965): Prescription for quantitative result!

K. Rabbertz

Two-jet production with gluons!

Reaction probability proportional to number of vertices Leading order (LO) 1970s: Uncertainty estimate: 50-100% Computing time: O(1h)

K. Rabbertz

More vertices \rightarrow next-to-leading order!

Particularly difficult: Diagrams with loops! Next-to-leading order (NLO) 1990s: Uncertainty estimate: 5% Computing time: O(1000 h)

K. Rabbertz

Many VERY complicated diagrams → next-to-next-to-leading order!

Particularly difficult: Diagrams with two loops! NNLO: More than 20 years later 2017: Uncertainty estimate: 1% Computing time: O(250000 h)

K. Rabbertz

Tübingen, Germany, 04.10.2017

8

The Strong Force

CMS *Preliminary*

Comparison of Theory to Data

- Parametric fits: Need hundreds of computations for varying inputs
- Not possible with 250 kh computing time!
- Solution: Interpolation grids to avoid repetitions
- Two packages available APPLgrid & fastNLO

APPLgrid, Carli et al., Eur. Phys. J. C, 2010, 66, 503. fastNLO, Britzger et al., arXiv:0609285, 1208.3641.

We use fastNLO, i.a. developed at ETP <u>https://fastnlo.hepforge.org</u>

fast pQCD calculations for hadron-induced processes

Home Do	cumentation	Scenarios	Code	Interactive (maintenance)	Links
General concept					
	May 7, 2017				
The fastNLO project provides	First NN	LO interp	olation	tables available	

Tübingen, Germany, 04.10.2017 bwHPC Symposium 2017

O(10 h)

- 1. Preprocessing: Check of interpolation quality
 - Short test jobs
- 2. NNLOJET Warm-up: Vegas integration optimisation
 - I long (multi-core) job per process (→ bwUniCluster at KIT)
 O(100 h)
- 3. Interpolation Warm-up: Adapt interpolation grids to phase space
 - Only phase space provided from NNLOJET \rightarrow significant speed-up O(100 h)
- 4. Interpolation grid production:
 - Thousands of parallel jobs (→ bwForCluster NEMO at Freiburg)
 O(250 kh)
- 5. Postprocessing: Statistical evaluation and combination of all produced grids ...
 - Combination scripts/programs
- 6. Present final results

K. Rabbertz

Tübingen, Germany, 04.10.2017bwHPC Symposium 2017

11

O(100 h)

20 min :-)

NNLOJET + APPLfast

Massive parallelised computing on Virtual Machines with 24h lifetime

Job Type # Jobs Events / Runtime / # Evenue Job Job	ts Total Output Total Runtime
LO 10 140 M 20.6 h	4 G 24 MB 206 h
NLO-R 200 6 M 19.0 h	2 G 1.3 GB 3800 h
NLO-V 200 5 M 21.2 h	.0 G 1.2 GB 4240 h
NNLO-RRa 5000 60 k 22.5 h	.3 G 26 GB 112500 h
NNLO-RRb 5000 40 k 20.3 h	2 G 27 GB 101500 h
NNLO-RV 1000 200 k 19.8 h	2 G 6.4 GB 19800 h
NNLO-VV 300 4 M 20.5 h	.2 G 2.0 GB 6150 h
Total 11710 !	5 G 64 GB 248196 h

Production output: O(100 GB) Final output: O(100 MB)

Calculated on BwForCluster NEMO in Freiburg

Optimised scenario: Finished in two days with 7800 parallel jobs at maximum!

K. Rabbertz

Software Environment

Software Environment

Software Distribution

From CERN:

- Read-only file system
- HTTP based protocol
- Proxy caches files from server

Provided by us (ETP):

- ETP CVMFS Server to provide our own software
- ETP HTTP Server for files with short life-cycle

Software Distribution

From CERN:

- Read-only file system
- HTTP based protocol
- Proxy caches files from server

Provided by us (ETP):

- ETP CVMFS Server to provide our own software
- ETP HTTP Server for files with short life-cycle

Drastic reduction of incoming traffic

K. Rabbertz

Resource Provisioning Models

- Resource dependent provisioning of opportunistic resources
 - Simple but unflexible: Constant capacity extension
 - On-demand booking for job peak loads
 - Back-filling of unused resources
- Resource scheduler for dynamic resource usage and controlling

Cost-efficient concurrent resource usage

K. Rabbertz

- Lightweight management solution developed at KIT
- Support for multiple batch systems and resource providers
- https://github.com/roced-scheduler/ROCED

Responsive On-Demand Cloud-enabled Deployment (ROCED)

K. Rabbertz

- Dynamic on-demand provisioning of VMs
- Integration into local batch system
- Scalability up to 8k cores demonstrated

- Precise but CPU-intensive predictions available for particle collisions
- Interpolation grids like fastNLO enable their use in comparisons to data to determine fundamental parameters of nature
- Virtualisation and ROCED resource scheduler permit efficient and concurrent usage of opportunistic HPC resources
- Large-scale productions successfully tested on bwForCluster NEMO
- Further improvements are in development
- Ony possible thanks to the Baden-Württemberg HPC support. Thank you!

21

Thank you for your attention!

- Precise but CPU-intensive predictions available for particle collisions
- Interpolation grids like fastNLO enable their use in comparisons to data to determine fundamental parameters of nature
- Virtualisation and ROCED resource scheduler permit efficient and concurrent usage of opportunistic HPC resources
- Large-scale productions successfully tested on bwForCluster NEMO
- Further improvements are in development
- Ony possible thanks to the Baden-Württemberg HPC support. Thank you!

Cordial thanks go to the organisers for the invitation, to my collaborators from NNLOJET, fastNLO & APPLgrid, to the colleagues from bwForCluster at Freiburg and bwUniCluster at KIT for the fantastic support, and to my local colleagues at ETP for all their help and contributions to this talk!

Particle Detection

24

Step 1: Preprocessing

- NNLOJET Warm-up:
 - Must be one job per process type
 - Multi-threading possible

Job Type	# Jobs	Threads / Job	Events / Job	Runtime / Job	Total Runtime
LO	1	16	32 M	0.35 h	0.35 h
NLO-R	1	16	16 M	1.0 h	1.0 h
NLO-V	1	16	16 M	1.0 h	1.0 h
NNLO-RRa	1	32	5 M	17.5 h	17.5 h
NNLO-RRb	1	32	5 M	20.7 h	20.7 h
NNLO-RV	1	16	8 M	22.4 h	22.4 h
NNLO-VV	1	16	8 M	24.6 h	24.6 h
Total	7	-	-	-	87.6 h

Calculated on BwUniCluster at KIT thanks to Baden-Württemberg High Performance Computing (HPC) support

Step 3: Phase Space Exploration

APPLfast Warm-up:

- **NNLOJET** is run without CPU-time expensive weight calculation
- At least 1 job per process needed to determine phase space limits individually
- Grids created and optimised during warm-up (APPLgrid)
- Grids created in production step from optimised x and Q-scale limits (fastNLO) -
- Warm-up can be parallelised, if necessary (fastNLO) -
- Presented table used for extensive testing; overkill for normal use

	Job Type	# Jobs	Events / Job	Runtime / Job	# Events	Total Runtime
	LO	5	500 M	12 h	2.5 G	60 h
	NLO-R	5	300 M	18 h	1.5 G	90 h
	NLO-V	5	500 M	13 h	2.5 G	65 h
In this setup most x _{min} limits from LO runs, 3 from higher- order runs.	NNLO-RRa	10	50 M	13 h	0.5 G	130 h
	NNLO-RRb	10	50 M	15 h	0.5 G	150 h
	NNLO-RV	5	300 M	19 h	1.5 G	90 h
	NNLO-VV	5	500 M	12 h	2.5 G	60 h
	Total	45			11.5 G	645 h

K. Rabbertz

Challenges for Data Intensive Jobs

bw HPC

- Persistent storage only located at specific sites
- Storage performance usually designed for one Grid site
- Network shared as opportunistic resource
- Variable utilisation of storage and network

Challenges for Data Intensive Jobs

- Persistent storage only located at specific sites
- Storage performance usually designed for one Grid site
- Network shared as opportunistic resource
- Variable utilisation of storage and network

Proxy required for file transfer protocol to reduce incoming traffic Only possible thanks to 20 Gbit link KIT-Freiburg

K. Rabbertz