

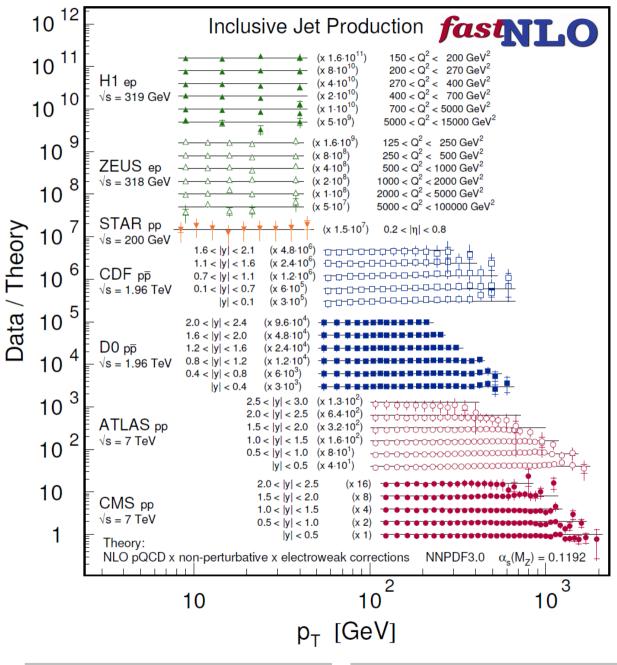
Possibilities and status of interpolation grids

K. Rabbertz (KIT)

K. Rabbertz

Geneva, Switzerland, 23.01.2018

CMS SMPJ Workshop

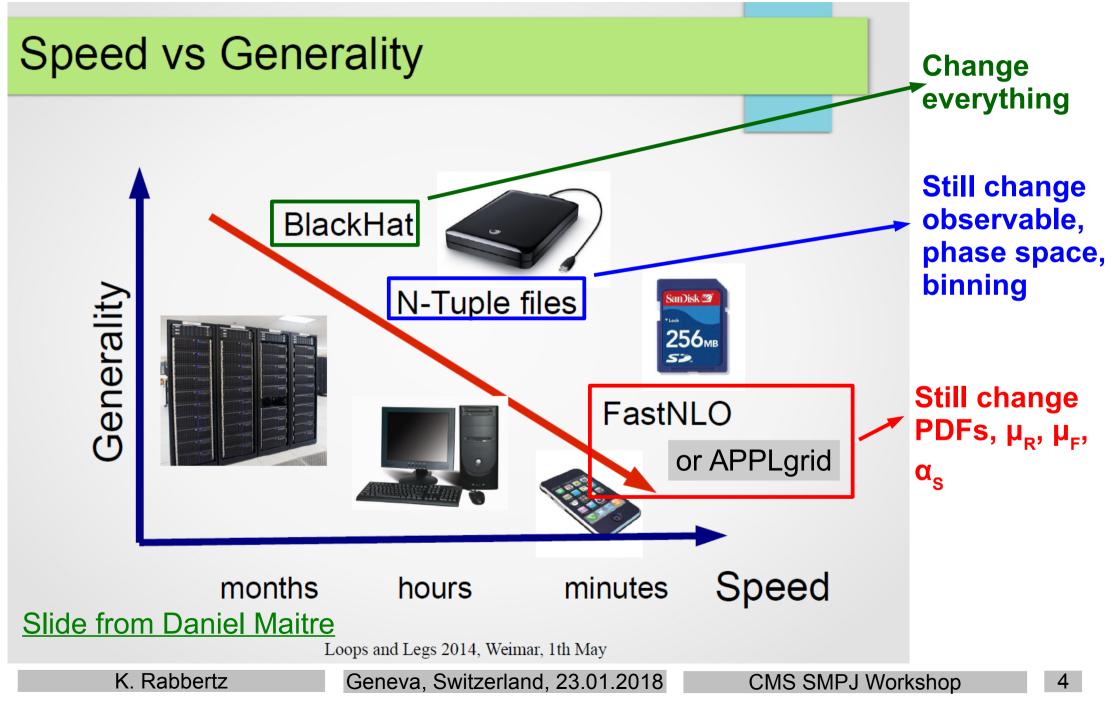


- Interpretation of experimental data requires reasonably fast theory
- Often: Repeated computation of same cross section:
 - Different PDF sets; PDF uncertainties
 - Variations of renormalisation & factorisation scales μ_R, μ_F
 - Variation of α_s(M_z)
 - SM parameter fits (→ xFitter)
- Jets at NLO were slow; nowadays NNLO in general very demanding!
 - Need procedure for fast repeated computations of higher order cross sections
 - Use interpolation grids like from fastNLO or APPLgrid (both are interfaced to xFitter)

Motivation

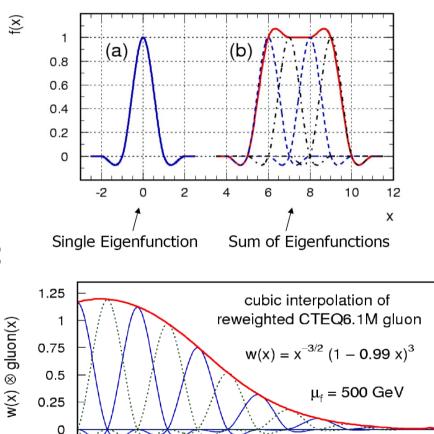
Not only do nice comparisons of theory to data ...

but also redo them quickly for various choices of PDFs, scales μ_R , μ_F , α_S


K. Rabbertz

Geneva, Switzerland, 23.01.2018

Interpolation benefit


Implemented in APPLgrid & fastNLO Use interpolation kernel

- Introduce set of n discrete x-nodes, x_i's being equidistant in a function f(x)
- Take set of Eigenfunctions $E_i(x)$ around nodes x_i
- \rightarrow Interpolation kernels
- Actually a rather old idea, see e.g. C. Pascaud, F. Zomer (Orsay, LAL), LAL-94-42
- → Single PDF is replaced by a linear combination of interpolation kernels

$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$

- \rightarrow Then the integrals are done only once
- → Afterwards only summation required to change PDF

APPLgrid, Carli et al., Eur. Phys. J. C, 2010, 66, 503. fastNLO, Britzger et al., arXiv:0609285, 1208.3641.

Tabulate the convolution of the perturbative coefficients with the interpolation kernel

K. Rabbertz

Geneva, Switzerland, 23.01.2018

CMS SMPJ Workshop

10⁻¹

x_{aluon}

0.5

0.9

10⁻²

10⁻³

10⁻⁴

fastNLO page at HepForge: http://fastnlo.hepforge.org/

fast pQCD calculations for hadron-induced processes

Home	Docume	ntation	Scenarios	Code	Interactive (maintenance)	Links	
Choose fastNLO version	pi	fastnlo_toolkit_2.3.1 (pre)releases pre-2411 Intermediate release, fixing some small issues, checked to work with LHAPDF-6.2.0, YODA-1.6.7, Rivet-2.5.4					
fastNLO Toolkit v2.3 Version 2.3 Instructions	pi pi	re-2212 ReleaseN re-2163 ReleaseN	lotes ChangeLog Publi lotes ChangeLog Publi	c release, has p c release, can a	r new developments including extended table forma atory producer for ROOT histograms and for statistical tab also provide PDF uncertainties via LHAPDF6 s with Sherpa via to be released MCgrid package		
fastNLO Reader v2.1 Version 2.1 Instructions	p	re-1871 ReleaseN	lotes ChangeLog Publi	c release, fixes	s with Sherpa via to be released MCgrid package some little hiccups in optional parts and compiler w presented at DIS Warschau and CMS PDF Forum	arnings	

Install two parts with: configure, make, make install

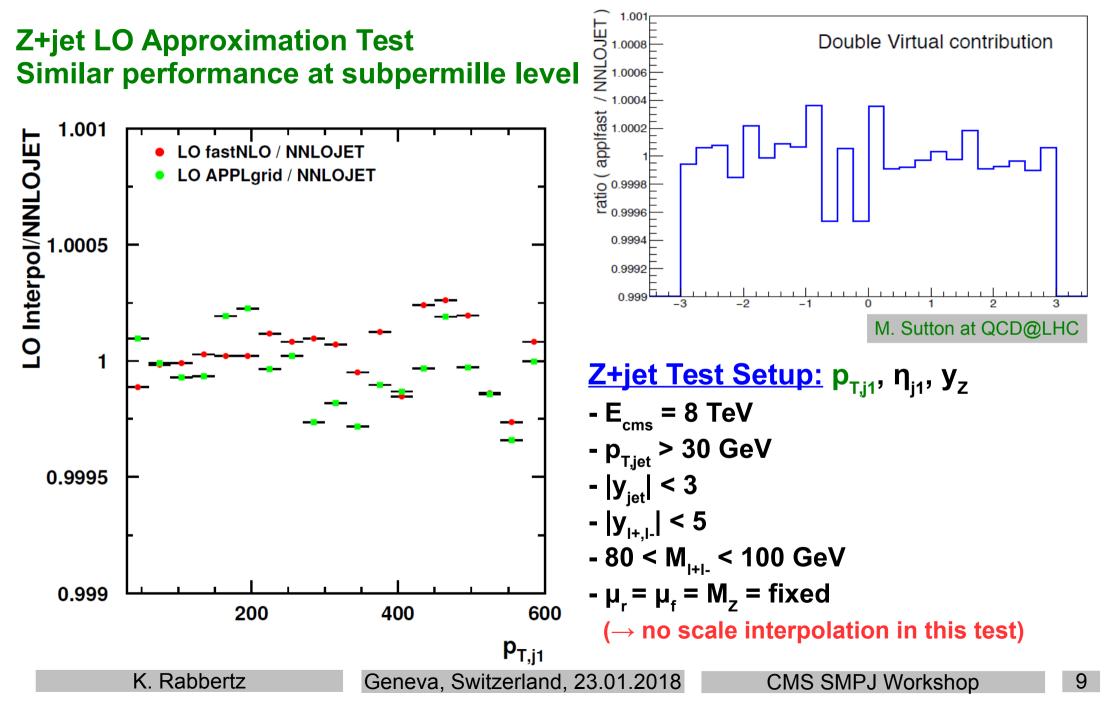
fastnlo_toolkit for interpolation grid creation and evaluation

- Interface package specific for desired theory code, e.g. fastnlo_interface_nlojet
- Latest release requires C++11 standard
- Alleviates using newest releases of LHAPDF, RIVET & YODA

For APPLgrid see: http://applgrid.hepforge.org/


K. Rabbertz

Geneva, Switzerland, 23.01.2018


- Interface with NLOJet++ in use in H1, D0, CMS since a looong time!
- More recently fixed-order processes available through Sherpa & loop providers like BlackHat, OpenLoops, or NJET are interfaced through the MCgrid package (similar for APPLgrid)
- Since two years working with APPLgrid (M. Sutton, C. Gwenlan) & NNLOJET colleagues (T. Morgan, A. Huss, et al.) on common interface to the grid production
 - Approaching final results → further slides
- Within CMS contact KR for more details, software packages, and setup
- Further theory packages use either fastNLO or APPLgrid, e.g. BlackHat, DiffTop, Stripper (ttbar NNLO), MCFM, ...

Step 1: Preprocessing

Step 2: Vegas Integrations

- NNLOJET Warm-up:
 - Must be one job per process type
 - Multi-threading possible

Job Type	# Jobs	Threads / Job	Events / Job	Runtime / Job	Total Runtime
LO	1	16	32 M	0.35 h	0.35 h
NLO-R	1	16	16 M	1.0 h	1.0 h
NLO-V	1	16	16 M	1.0 h	1.0 h
NNLO-RRa	1	32	5 M	17.5 h	17.5 h
NNLO-RRb	1	32	5 M	20.7 h	20.7 h
NNLO-RV	1	16	8 M	22.4 h	22.4 h
NNLO-VV	1	16	8 M	24.6 h	24.6 h
Total	7	-	-	-	87.6 h

Step 3: Phase Space Exploration

APPLfast Warm-up:

- **NNLOJET** is run without CPU-time expensive weight calculation -
- At least 1 job per process needed to determine phase space limits individually
- Grids created and optimised during warm-up (APPLgrid)
- Grids created in production step from optimised x and Q-scale limits (fastNLO) -
- Warm-up can be parallelised, if necessary (fastNLO)
- Presented table used for extensive testing; overkill for normal use

	Job Type	# Jobs	Events / Job	Runtime / Job	# Events	Total Runtime
	LO	5	500 M	12 h	2.5 G	60 h
	NLO-R	5	300 M	18 h	1.5 G	90 h
	NLO-V	5	500 M	13 h	2.5 G	65 h
In this setup	NNLO-RRa	10	50 M	13 h	0.5 G	130 h
most x _{min} limits from LO runs, 3 from higher- order runs.	NNLO-RRb	10	50 M	15 h	0.5 G	150 h
	NNLO-RV	5	300 M	19 h	1.5 G	90 h
	NNLO-VV	5	500 M	12 h	2.5 G	60 h
	Total	45			11.5 G	645 h

K. Rabbertz

Geneva, Switzerland, 23.01.2018

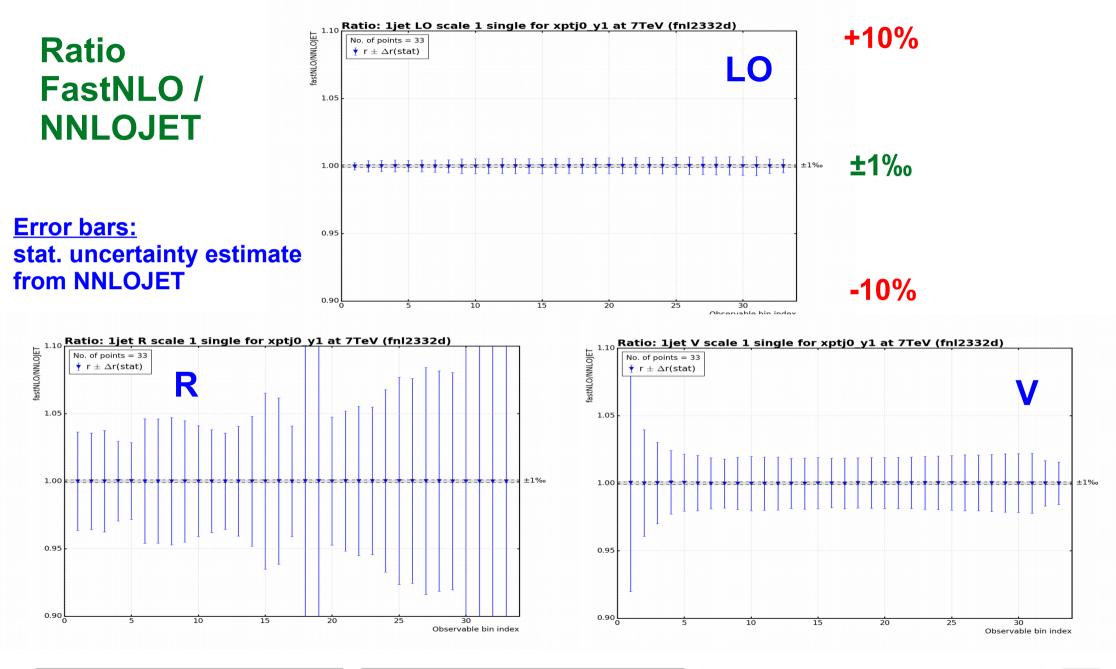
CMS SMPJ Workshop

NNLOJET + APPLfast

- Massive parallelised computing on Virtual Machines with 24h lifetime
- Example with fastNLO, APPLgrid example in progress

Job Type	# Jobs	Events / Job	Runtime / Job	# Events	Total Output	Total Runtime
LO	10	140 M	20.6 h	1.4 G	24 MB	206 h
NLO-R	200	6 M	19.0 h	1.2 G	1.3 GB	3800 h
NLO-V	200	5 M	21.2 h	1.0 G	1.2 GB	4240 h
NNLO-RRa	5000	60 k	22.5 h	0.3 G	26 GB	112500 h
NNLO-RRb	5000	40 k	20.3 h	0.2 G	27 GB	101500 h
NNLO-RV	1000	200 k	19.8 h	0.2 G	6.4 GB	19800 h
NNLO-VV	300	4 M	20.5 h	1.2 G	2.0 GB	6150 h
Total	11710			5.5 G	64 GB	248196 h

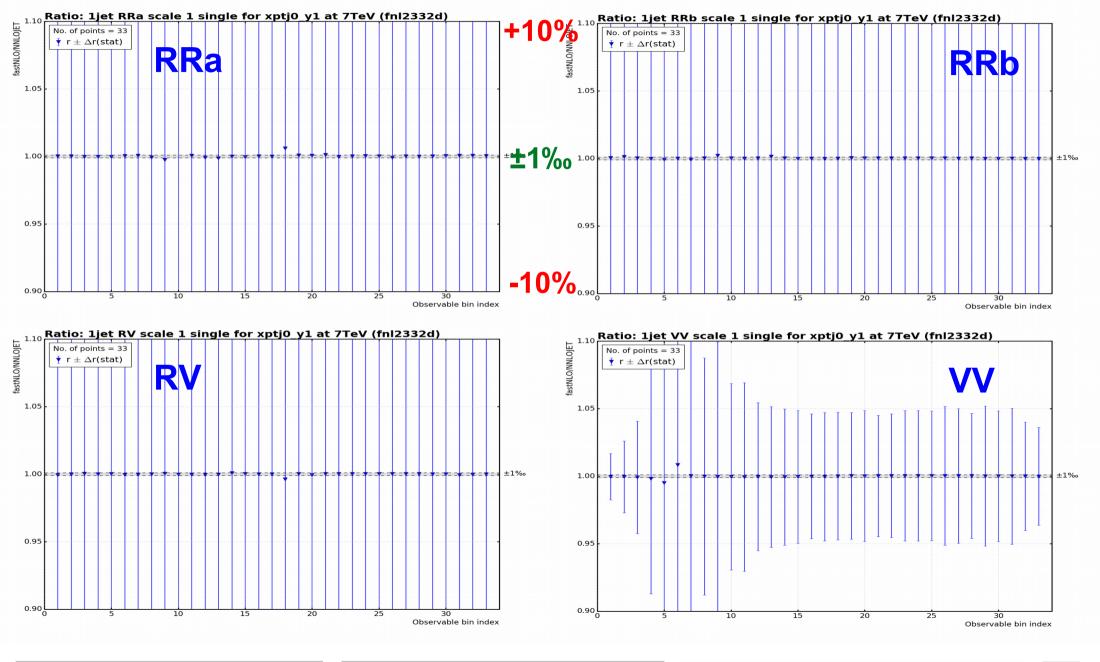
3 times 11710 grids/tables + all NNLOJET output! Final 3 files for analysis are O(10 MB) each.


Step 5: Postprocessing

- Checking, purging, combining:
 - Check interpolation quality for individual grids
 - ➡ Run NNLOJET combination script → weight tables
 - Weighted merging of grids
 - Check and treat potential remaining unsuppressed fluctuations
 - Do some nice physics

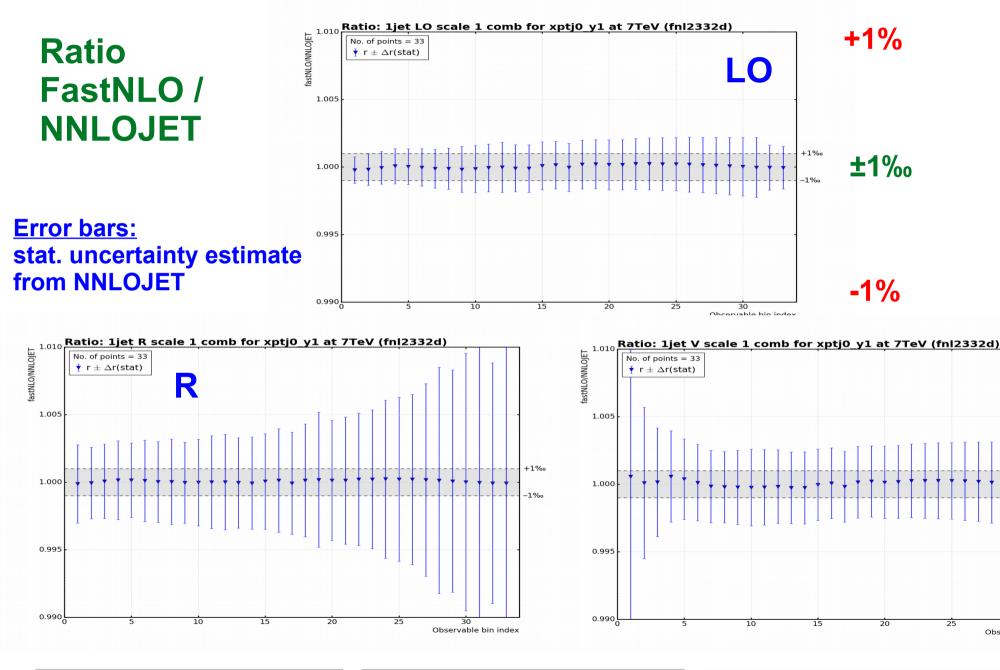
Inclusive jet pT – single grid

K. Rabbertz


Geneva, Switzerland, 23.01.2018

CMS SMPJ Workshop

Inclusive jet pT – single grid


K. Rabbertz

Geneva, Switzerland, 23.01.2018

CMS SMPJ Workshop

Inclusive jet pT – combined grid

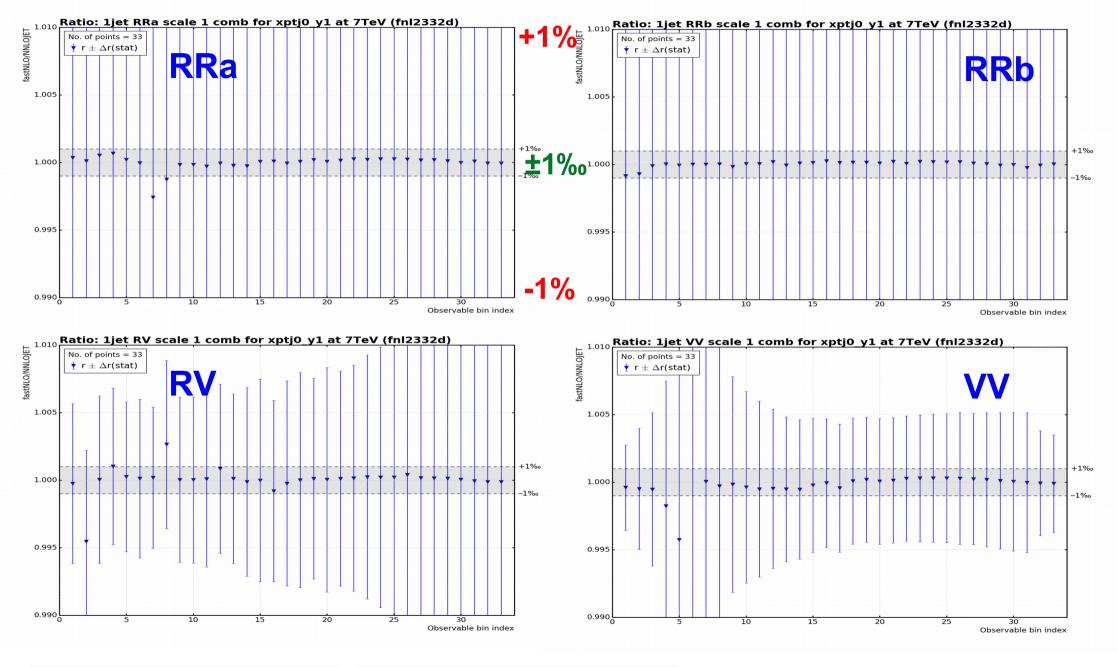
K. Rabbertz

Geneva, Switzerland, 23.01.2018

CMS SMPJ Workshop

16

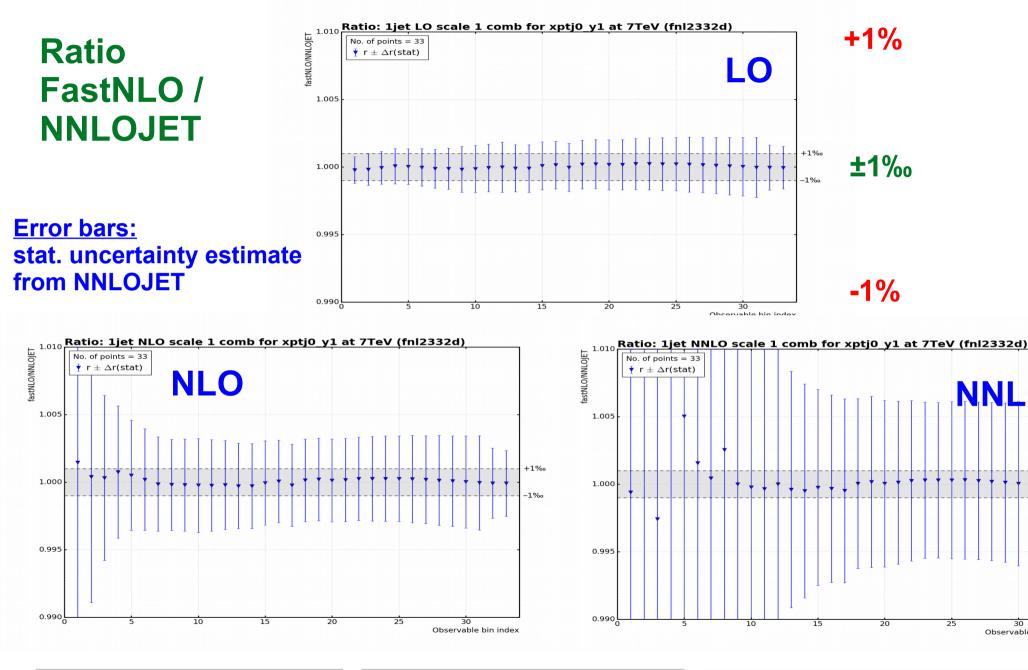
30


Observable bin index

+1%

-1‰

Inclusive jet pT – combined grid


K. Rabbertz

Geneva, Switzerland, 23.01.2018

CMS SMPJ Workshop

Inclusive jet pT – combined grid

K. Rabbertz

Geneva, Switzerland, 23.01.2018

CMS SMPJ Workshop

25

18

+1%

-1%

NNLO

30

Observable bin index

NNLO Outlook from March 2017

- NNLOJET provides NNLO in common interface for:
 - Z incl., Z+jet, W incl., pp jet+dijets, H incl., H+jet, DIS jet+dijets, e+e- 3jets
 - W+jet almost ready; more to come
- APPLgrid+fastNLO interface (NNLO-Bridge) is working
- Numerous adaptations implemented by all sides
- Large-scale productions tested for Z+jet and DIS jet
- Work in progress: Implementation of final combination procedure for interpolation grids
- Looking forward to many new NNLO interpolation grids in 2017

- NNLOJET provides NNLO in common interface for:
 - **Z** incl., Z+jet, W incl., pp jet+dijets, H incl., H+jet, DIS jet+dijets, e+e- 3jets
 - W+jet published; code to be released, see also previous talk by A. Huss!
- APPLgrid+fastNLO interface (NNLO-Bridge) is working
- Numerous adaptations implemented by all sides
- Large-scale productions tested for Z+jet and DIS jet and pp jet
- **DIS NNLO results &** α_s published with H1: Eur. Phys. J. C, 2017, 77, 791
- Received final combination prescription for NNLOJET results last Nov.
 - Removes fluctuations from bad cancellations
 - + fastNLO table merging implemented; looks ok \rightarrow check for outliers
 - Interpolated scale variations working except asymmetric $\mu_r \neq \mu_f$ TBD
- Looking forward to many new NNLO interpolation grids in 2018

Summary

- APPLfast interface (NNLO-Bridge) and interpolation is working
- Large-scale productions tested for Z+jet, DIS jet, and pp jets
- Combination of grids with weights a la NNLOJET implemented
- Address last issues and check on possible remaining outliers in grids even with weighted combination
- Start to produce a series of APPLgrid and/or fastNLO tables for various processes with publically available data
- Final grids will be made available via a common repository on HepForge, open for contributions from the community

Thank you for your attention!

