

Seminar DESY-Zeuthen

Jet physics at the LHC

- Motivation
- Accelerators and Detectors
- Jet Algorithms and Jet Calibration
- Inclusive Jets
- Dijet and 3-Jet Mass
- The strong Coupling from Jets
- Outlook

Will not cover or mention only briefly other very interesting subjects like event shapes, V plus jet production, forward jets, dijets at large rapidity.

Abundant production of jets \rightarrow hadron colliders are "jet laboratories" Learn about hard QCD, the proton structure, non-perturbative effects ...

Abundant production of jets \rightarrow hadron colliders are "jet laboratories" ... and the strong coupling alpha_s !

Achievements

DESY

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda = 0.5$ GeV while $\Lambda = 0.15$ GeV would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13]. UA2, PLB 118 (1982).

Klaus Rabbertz

Achievements

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda = 0.5$ GeV while $\Lambda = 0.15$ GeV would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13]. UA2, PLB 118 (1982).

... and today !

Klaus Rabbertz

Where to go ...

Kinematic plane of process scale² vs. x

- Huge new phase space accessible in pp collisions at LHC
- Many different final states to examine with high accuracy
- A lot of progress on the theory side
- Check SM predictions at high scales, but watch out for corrections negligible up to now
- Determine the strong coupling and test its running at high scales
- Improve on PDFs and precision of SM predictions
- Any new "features"?

Klaus Rabbertz

LHC Luminosity

LHC: 2009 – present Collisions of p-p, Pb-Pb, and p-Pb

2009 – 2013: E_{cms} = 0.9, 2.36, 2.76, 7, 8 TeV 2012: peak inst. lumi almost 8 x 10³³ cm⁻²s⁻¹

ATLAS and CMS

Silicon trackers:Up to $|\eta| = 2.5$ Calorimetry:Up to $|\eta| = 4.9$ Muon chambers:Up to $|\eta| = 2.7$ Jet energy scale:1 - 3 % prec.

Silicon trackers:Up to $|\eta| = 2.5$ Calorimetry:Up to $|\eta| = 5.0$ Muon chambers:Up to $|\eta| = 2.4$ Jet energy scale:1 - 3 % prec.

Both detectors are/will be complemented by further instrumentation at larger rapidities.

Jet Algorithms

- Experimental Uncertainties (~ in order of importance):
 - Jet Energy Scale (JES)
 - Noise Treatment
 - Pile-Up Treatment
 - Luminosity
 - Jet Energy Resolution (JER)
 - Trigger Efficiencies
 - Resolution in Rapidity
 - Resolution in Azimuth
 - Non-Collision Background

- Theoretical Uncertainties:
 - PDF Uncertainty
 - pQCD (Scale) Dependence
 - Non-perturbative Corrections
 - PDF Parameterization
 - NLO-NLL matching schemes
 - Electroweak Corrections
 - Knowledge of α_s(M_z)

There is a lot to learn here from comparison to measurements possible at the LHC!

Berlin, 21.02.2013

Huge exp.

progress

since 2009

Dominant uncertainty for measurements of jet cross sections! Enormous progress at Tevatron, and at LHC in just three years. **QCD** at hadron colliders is becoming precision physics!

D0 from 0.7/fb (2011)

Jet Energy Scale and Pile Up

14

But: New situation in 2012 at 8 TeV with many pile-up collisions!

ATLAS Z $\rightarrow \mu\mu$ candidate with 25 reconstructed primary vertices: (Record beyond 70 by now.)

High transverse Momenta

Agreement with predictions of QCD at NLO over many orders of magnitude up to 2 TeV in jet p_{τ} Data at 8 TeV in progress ...

Inclusive Jets

LHC Data and PDFs

First global fits including LHC data ! **Comparison of ABM11 PDFs** ATLAS inclusive jets (2010, 37/pb), ATLAS/LHCb W,Z with CMS inclusive jets (2010, 34/pb) rap. (2010), CMS W el. Asymmetry (2011) NNLO(approx.) $\mu_{\rm P} = \mu_{\rm F} = E_{\rm T}$ 2 observations: data/theory - slightly smaller uncertainties in NNPDF23 **ABM11** Y = 0.75MSTW08 - measurement always lowish at high y ATLAS Inclusive jet pT distribution ($2.1 \le |y| < 2.8$) 0.5 Y = 0.251.2 Y = 1.251.5 Ratio to NNPDF2.3 0.8 0.5 0.6 Y = 2.25Y = 2.75• CMS 1.5 34 1/pb 04 11HIH NNPDF2.3 NLO anti-k_T NNPDF2.1 NLO R=0.5 0.2 Experimental data 10^{2} 10^{2} 10^{3} 10^{3} 400 500 300 100 200 pT (GeV) E_T (GeV) E_T (GeV) NNPDF23, R.D.Ball et al., arXiv:1207.1303 ABM11, S.Alekhin, J.Blümlein, S.Moch, arXiv:1208.1444 Klaus Rabbertz Berlin. 21.02.2013 Seminar DESY-Zeuthen

17

600

PDFs and matched Showers

Agreement between NLO POWHEG vs. NLOJet++

POWHEG + matched parton showers ...

Agreement with QCD using diverse PDFs Use to improve PDFs (high x gluon)

Recipe used at Tevatron & LHC:

- take LO parton shower (PS) MC
- derive corr. for non-pert. (NP) effects,
 i.e. multiple parton interactions and
 hadronization
- \rightarrow assume PS effect small on NLO
- \rightarrow assume NP effects similar for LO,NLO

Observations:

- assumptions fine at central rapidity (not shown here)
- NP corrections larger for R=0.7 than 0.5
- for |y| > 2 PS effects visible

Figures courtesy of S.Dooling, H.Jung, P.Gunnellini, P.Katsas, A.Knutsson (s. also arXiv:1212.6164)

Seminar DESY-Zeuthen

19

G. Soyez, PLB698 (2011).

Here: Ratio with different jet sizes R = 0.2 and 0.4

ALICE measurement: following proposal from G . Soyez Emphasizes effects of showering and hadronization!

Here:

E

Inclusive Jet Ratios: 2.76 / 7.0

High Masses

Klaus Rabbertz

 $\propto \alpha_s^2$

 $d^2\sigma$

 $\overline{dM_{JJ}d[|y|_{max}, y^*]}$

anti-kT, R=0.7, 7 TeV, 2011

Again agreement with predictions of QCD over many orders of magnitude!

Quantities sensitive to potential deviations from DGLAP evolution at small x Some MC event generators run into problems ... but also BFKL inspired ones! Large y coverage needed, also useful for WBF tagging jets.

6

Berlin. 21.02.2013

Δy

Most forward-backward dijet selection Data 2010 ATLAS Theory / Data HEJ (parton level) Forward/backward selection POWHEG + PYTHIA Q₀ = 20 GeV POWHEG + HERWIG $240 \le \overline{p}_{-} < 270 \text{ GeV}$ 0.5 210 ≤ p_ < 240 GeV 0.5 180 ≤ p₊ < 210 GeV 0.5 I50 ≤ p_ < 180 GeV 0.5 2 3 5 Δ

ATLAS, JHEP09, 2011

Klaus Rabbertz

All possible dijet pair distances over leading dijet pair distance

Jet Substructure

α_s at High Scales

3-Jet Mass, D0

Chi² Comparison to central PDF

Takes into account correlations in experimental uncertainties Best agreement found with MSWT2008 and NNPDF2.1

Klaus Rabbertz

Berlin, 21.02.2013

29

3-Jet Mass, CMS (in prep.)

Anti-kT:R=0.7(looked also into R=0.5)All jets:pT > 100 GeV(other also rel. cuts $p_{T_3}/<p_{T_{1,2}}>$ examined)Binned in: $|y|_{max}$ of leading three jets up to 2Scale choice: $\mu_r = \mu_f = m_3/2$ (alternativ < $pT_{1,2,3}>$ abandoned)

Theory predictions rel. to CT10 PDF set Data under examination, to come soon!

Now: Ratio for different multiplicity $N_{iet} = 3 \text{ over } 2$

- **Avoids direct dependence on PDFs** and the RGE of QCD
- Use cross-section ratios!
- \rightarrow reduces other theor. and exp. uncertainties along the way
- \rightarrow eliminates luminosity dependence (normalization)
- **Choices of CMS:**
 - Ratio of inclusive 3-jet to 2-jet production
 - Average dijet p_{τ} as scale
- Other 3-jet observables possible, see e.g. propositions by D0 D0, PLB718 (2012) 56-63

Klaus Rabbertz

Inclusive Jet Ratios: 3 / 2

Berlin. 21.02.2013

31

Data comparison to NNPDF21

 $^{+2}_{-5}\%$

Berlin, 21.02.2013

- Agreement within uncertainties
 - Scale uncertainty:
 - PDF uncertainty: $1.5\!-\!2.3\%$
- Fits only above 400 GeV to avoid threshold effects
- Similarly described by CT10 and even better by MSTW2008
- Discrepancies observed with ABM11

Measurement setup:

- Integrated luminosity: $\mathcal{L}_{
 m int} = 5.0\,{
 m fb}^{-1}$
- Minimal jet pT: $p_{\rm T} > 150 \, {\rm GeV}$
- Maximal jet rapidity: |y| < 2.5

Seminar DESY-Zeuthen

- Discrepancies with ABM11 especially below 600 GeV
- Fits of the strong coupling tend versus the upper edge of the available series in alpha_s
 - No result with ABM11 to report
- Much smaller gluon down to 50% at high x at the same time as preference for smaller couplings
- To be further discussed/resolved ...

Seminar DESY-Zeuthen

ζp_{T1}

GeV

Compatible results from NNPDF21, 0.14 CT10 and MSTW2008 with x² fit 0.12 using correlated experimental uncertainties: 0.1 0.08 **NNPDF21**: $\alpha_{s}(M_{7}) = 0.1143 \pm 0.0064$ 0.06 $\alpha_{s}(M_{7}) = 0.1130 \pm 0.0080$ **CT10**: **MSTW2008**: $\alpha_s(M_7) = 0.1135 \pm 0.0096$ 0.04 400 600 200

- **Error bars show full uncertainty** ones
- including the correlated systematic

Not used

0.18

0.16

Determination of α_s (NLO)

Although only one point shown here extraction works equally well in e.g. three subranges

PDF uncertainty: Repeat fit for each replica \rightarrow get estimators for μ and σ Scale uncertainty: Repeat fit for all six variations \rightarrow get maximal deviation

 $\alpha_s(M_Z) = 0.1143 \pm 0.0064 \,(\text{exp}) \pm 0.0019 \,(\text{PDF}) \pm_{0.0000}^{0.0050} \,(\text{scale})$

Klaus Rabbertz

Determination of α_s (NLO)

- Comparison to extractions from other hadron collider experiments
- Although only one point shown here extraction works equally well in e.g. three subranges

PDF uncertainty: Repeat fit for each replica \rightarrow get estimators for μ and σ Scale uncertainty: Repeat fit for all six variations \rightarrow get maximal deviation

Much smaller uncertainty here

$$\alpha_s(M_Z) = 0.1143 \pm 0.0064 \,(\text{exp}) \pm 0.0019 \,(\text{PDF}) \pm_{0.0000}^{0.0050} \,(\text{scale})$$

D0, PRD80, 2009

Berlin. 21.02.2013

CDF, PRL88, 2002

Klaus Rabbertz

Seminar DESY-Zeuthen

Malaescu/Starovoitov, EPJC72, 2012

37

α_s World Summary

Jet Analysis Uncertainties

- Experimental Uncertainties (~ in order of importance):
 - Jet Energy Scale (JES)
 - Noise Treatment
 - Pile-Up Treatment
 - Luminosity
 - Jet Energy Resolution (JER)
 - Trigger Efficiencies
 - Resolution in Rapidity
 - Resolution in Azimuth
 - Non-Collision Background
 - 🛶 • •

Expected exp. Precision for $\alpha_s(M_z)$

from cross jet sections (inclusive, 3-jet, ...) of the order of ± 0.001 !

Klaus Rabbertz

- Theoretical Uncertainties:
 - PDF Uncertainty
 - pQCD (Scale) Dependence
 - Non-perturbative Corrections
 - PDF Parameterization
 - NLO-NLL matching schemes
 - Electroweak Corrections
 - Knowledge of α_s(M_z)

To be addressed! These become limiting factors ...

- Hadron colliders are (multi-) jet laboratories
- Jet measurements at hadron colliders are becoming PRECISION PHYSICS
- Must be accompanied by precise theory (Jets at NNLO ...)
- Interplay between strong and electroweak interactions becomes important at the TeV scale
- Data quantity and quality at the LHC open up new regimes in phase space and precision to be exploited
- Many "established facts" need to be carefully checked to avoid missing something NEW
- I didn't even mention possibilities with jets with associated boson production!

We are entering an extremely interesting period with huge advances experimental data quality and quantity as well as theory predictions!

Klaus Rabbertz

- Hadron colliders are (multi-) jet laboratories
- Jet measurements at hadron colliders are becoming PRECISION PHYSICS
- Must be accompanied by precise theory (Jets at NNLO ...)
- Interplay between strong and electroweak interactions becomes important at the TeV scale
- Data quantity and quality at the LHC open up new regimes in phase space and precision to be exploited
- Many "established facts" need to be carefully checked to avoid missing something NEW
- I didn't even mention possibilities with jets with associated boson production!

Many thanks to you for your attention and the invitation to this seminaire!

Klaus Rabbertz

Klaus Rabbertz

Jet Algorithms at LHC

Jets @ $\sqrt{s} = 8 \text{ TeV}$

• Inclusive jet pT (left) and dijet mass (right) spectrum for *pp* collisions at $\sqrt{s} = 8$ TeV for anti-k_t R=0.4 jets.

• Comparison with $\sqrt{s} = 7$ TeV 2011 data and to Pythia 6 (Pythia 8) MC predictions at $\sqrt{s} = 7$ TeV ($\sqrt{s} = 8$ TeV).

 \rightarrow lower center of mass energy in 2011; therefore, lower cross section.

Bertrand Chapleau

ICHEP 2012, Melbourne, July 4-11 2012

Dijet Mass ATLAS

m₃ Scale Dependence

One line per cross section bin for three choices of $\mu_{\scriptscriptstyle \sf F}$ scale factors

F. Stober

48

NNLO Scale Dependence

 $|y| < 4.4, 80 \text{ GeV} < p_T < 97 \text{ GeV}_{\text{From talk by N. Glover: Gehrmann, Glover, Pires}}$

Klaus Rabbertz

Berlin, 21.02.2013

Seminar DESY-Zeuthen

 $\pm 0.0003(\text{stat}) + ^{+0.0007}_{-0.0009}(\text{exp.}) + ^{+0.0002}_{-0.0001}(\text{NP}) + ^{+0.0010}_{-0.0005}(\text{MSTW}) + ^{+0.0000}_{-0.0024}(\text{PDFset}) + ^{+0.0046}_{-0.0066}(\text{scale})$

CMS	R: A	nal	vsis	Setu	D
	32	-			

- CMS data of 2011
- Anti-kT jet algorithm with R = 0.7
 - Compatible results with R = 0.5 as alternative
- Selection in rapidity y (1 bin):
 - Ensure tracker coverage
 - Two jets leading in p_T must be selected
 - Ensure hard dijet event
- Minimal transverse momentum p_τ:
 - Alternative thresholds 50 and 100 GeV checked
 - Alternative relative cut on hardness of 3rd jet tested
- Minimal average 2-jet <p_{T1,2}> (27 bins):
- O(2000) 2-jet ev. incl. O(300) 3-jet events above 1 TeV

 $\mathcal{L}_{\rm int} = 5.0 \, {\rm fb}^{-1}$

|y| < 2.5

 $p_{\rm T} > 150\,{\rm GeV}$

 $\langle p_{\mathrm{T1,2}} \rangle > 250 \,\mathrm{GeV}$

Berlin, 21.02.2013

51

 $\epsilon = 100\%$

 $\epsilon > 99\%$

- Three single-jet triggers (highest p_τ threshold 370 GeV)
 - Efficiency checked separately for incl. 2- and 3-jet events
- Particle-flow technique to reconstruct input objects to jet clustering
- Standard CMS event and jet selection criteria apply
- (η , p_{τ})-dependent jet energy correction factors, typically:
- Correction of detector effects using Bayesian iterative unfolding (RooUnfold)
 - Propagation of stat. uncertainties & correlations with MC toy method
 - Cross-checked with SVD unfolding
 - Comparison of directly unfolded ratio R₃₂ versus separate unfolding of inclusive 2- and 3-jet spectra

 $c_{
m JEC} \approx 1.2 \dots 1.0$ $c_{
m DET} < 5\%$

CMS R₃₂: Exp. Uncertainties

- Jet energy correction, known to 2.0 2.5%:
 - Provided as 16 mutually uncorrelated sources; fully correlated within source; Gaussian behaviour assumed
 - Dominated by absolute scale, followed by high pT extrapolation
- Unfolding uncertainty accounting for:
 - Variation of jet p_τ spectral slopes following differences from
 Pythia6 Z2 (agrees with MadGraph) and Herwig++ 2.3
 - Variation of jet energy resolution (JER)
 - Addition of non-Gaussian tails to JER
- Luminosity (normalization) uncertainty cancels
- No assumptions on bin-to-bin correlations with respect to y necessary, only 1 bin considered
- Statistical uncertainties propagated via unfolding

 $\Delta R/R < 1.0\%$

 $\Delta R/R \approx 1.2\%$