

DIS 2017

Determination of the strong coupling constant from inclusive jet cross sections

D. Britzger (DESY), **K. Rabbertz (KIT),** G. Sieber (KIT), D. Savoiu (KIT), M. Wobisch (Louisiana Tech)

Birmingham, UK, 05.04.2017

Motivation

- Why α_s(M_z)?
 - Among least known parameters of the standard model
 - Important for all processes from hadron-induced collisions
 - Needed for QCD precision comparisons
- How?
 - Start with inclusive jet data
 - Wide kinematic range through abundant production of jets
 - Measured in many experiments
 - Well defined in fiducial volume of detectors
 - Compare to theoretical prediction
 - Directly sensitive to $\alpha_s(M_z)$
 - Available at NLO in QCD+EW
 - QCD @ NNLO is under way
 - Less ambiguous with respect to scale choice

Main ingredients

Data

- Abundance of inclusive jet data from various experiments
 - ATLAS, CMS, CDF, D0, H1, ZEUS, STAR, …
- Inclusive jet measurement
 - Phase space, experimental uncertainties, correlations

Theory

- Partonic matrix element $\hat{\sigma}$
 - Sensitive to $\alpha_s(M_z)$
- Convolution with PDFs
 - Dependence on α_s(M_z)

Strategy?

Strategy?

Better strategy

Comparison of fit setups

	H1	DØ	CMS
theory predictions	NLO	approximate NNLO	NLO
α _s (M _Z) extraction procedure	direct χ^2 minimization	direct χ^2 minimization	
χ^2 definition	conventional χ ² (log data – log theory) + relative uncertainties	modified χ ² + nuisance parameters	conventional χ ² (data – theory) + absolute uncertainties
uncertainty estimation	linear error propagation	nuisance parameters	 "Δχ² = +1" subtraction in quadrature "offset" method

Significant differences!

- neglected in naïve combination of results
- develop unified fit procedure

K. Rabbertz

Birmingham, UK, 05.04.2017

Fitting framework: Alpos

New modular C++ based fitting framework

- used for $\alpha_s(M_z)$, PDF, and electroweak fits within H1 and CMS
 - ↘ input format: experience with xFitter/HERAFitter

Fitting framework: Alpos

Unified fit method

theory predictions	consistent (N)NLO		 World Average [4] Original publication Unified method 	
$\alpha_s(M_Z)$ extraction procedure	direct χ^2 minimization			
χ ² definition	conventional χ^2 (log data – log theory)	H1		
	+ relative uncertainties			
PDF and non-perturbative uncertainties	included in χ^2 definition	CMS		
PDF $\alpha_s(M_Z)$ dependence	additional uncertainty on $\alpha_s(M_Z)$			
Unified approach:				
slight differences wrt. original				
compatible within uncertainties				
more consistent comparison			0.115 0.120 0.125 0.130	
 simultaneous fit 	•	to (ex)	tal uncertainty $lpha_{s}(M_{Z})$	
K. Rabbertz	Birmingham, UK, 05.04.2017		DIS 2017 Workshop 11	

Unified fit result

More datasets

- Develop a robust procedure to determine α_s(M_z)
 - Include more than one dataset
 - Consistent treatment of theory
 - Extensible to additional observables
 - Unique
 - Flexibility
- How?
 - Start with inclusive jet data
 - Wide kinematic range through abundant production of jets
 - Measured in many experiments
 - Well defined in fiducial volume of detectors
 - Compare to theoretical prediction
 - Directly sensitive to $\alpha_s(M_z)$
 - Available at NLO in QCD+EW
 - OCD @ NNLO just around the corner K. Rabbertz Birmingham, UK, 05.04.2017
 - Less ambiguous with respect to scale choice

Outlook

- NNLOJET provides NNLO in common interface for:
 - Z incl., Z+jet, W incl., pp jet+dijets, H incl., H+jet, DIS jet+dijets, e+e- 3jets
 - W+jet almost ready; more to come
- APPLgrid+fastNLO interface (NNLO-Bridge) is working
- Numerous adaptations implemented by all sides
- Large-scale productions tested for Z+jet and DIS jet
- Work in progress: Implementation of final combination procedure for interpolation grids
- Looking forward to many new NNLO interpolation grids in 2017

We acknowledge support from an IPPP Associateship and Baden-Württemberg HPC support through BwUniCluster and BwForCluster.

Backup

α

Method comparison

H1 fit methodology

• iterative χ^2 minimization (*MINUIT*)

$$\chi^2_{\text{H1}} \rightarrow \sum_{ij} (\ln m_i - \ln t_i) \left[\mathbf{V}^{-1}_{(\text{rel})} \right]_{ij} (\ln m_j - \ln t_j)$$

- determine central value with experimental uncertainties only
- assume PDF without $\alpha_s(M_Z)$ dependence; use MSTW2008nlo with $\alpha_s(M_Z) = 0.118$
- additional theory uncertainties: NP corr., PDF, PDF $\alpha_s(M_Z)$, PDF set, μ_r , μ_f
 - obtained through additional fits / linear error propagation

$$\chi^{2}_{\mathrm{D}\varnothing} \rightarrow \sum_{i} \frac{\left[m_{i} - t_{i} \frac{1 + \sum_{k} \delta_{ik}^{(\mathrm{NP})} \left(\alpha_{k}^{(\mathrm{NP})}\right) + \sum_{l} \delta_{il}^{(\mathrm{PDF})} \left(\alpha_{l}^{(\mathrm{PDF})}\right)}{1 + \sum_{j} \delta_{ij} \left(\varepsilon_{j}\right)}\right]^{2}}{\sigma_{i,\mathrm{stat}}^{2} + \sigma_{i,\mathrm{uncorr}}^{2}}$$

DØ fit methodology

- iterative χ^2 minimization (*MINUIT*)
 - one nuisance parameter for each PDF eigenvector and each NP correction factor
 - interpolate cross section predictions obtained for PDFs assuming different values of α_s(M_Z)
- aNNLO (NLO predictions with threshold corrections + NNLO PDFs)
- **88** out of 110 data points excluded \leftarrow correlations with MSTW2008 PDFs

Method comparison

CMS fit methodology

$$\chi^2_{\text{CMS}} \rightarrow \sum_{ij} (m_i - t_i) \left[(\mathbf{V}_{\text{exp}} + \mathbf{V}_{\text{PDF}})^{-1} \right]_{ij} (m_j - t_j)$$

- χ^2 is evaluated for each PDF in an $\alpha_s(M_Z)$ series
 - resulting $(\chi^2, \alpha_s(M_Z))$ points are assumed to lie on a parabola
 - fit of second-degree polynomial function \rightarrow central value and uncertainty on $\alpha_s(M_Z)$
- PDF: CT10nlo (results are also provided for MSTW2008 and NNPDF21)

NP uncertainties obtained by performing additional fits with correlated variation of theory

Fit methods differ significantly!

- ightarrow "naive" combination of results (weighted average) not very conclusive
- \rightarrow need to extract $\alpha_{s}(M_{Z})$ using measurements from all experiments in a **unified** fit procedure

PDF $\alpha_s(M_z)$ dependence

How to express the $\alpha_s(M_Z)$ dependence of the cross section?

2 how to account for $\alpha_s(M_Z)$ dependence in PDFs?

Two methods are studied:

- calculate cross section using PDF for
 one chosen α_s(M_Z)
- prediction $\sigma(\alpha_s(M_Z))$ directly from fastNLO

"PDF Interpolation" (◊)

(method used in DØ publication)

- calculate cross section using PDF for each available $\alpha_s(M_Z)$
- prediction $\sigma(\alpha_s(M_Z))$ from interpolation between the points

Birmingham, UK, 05.04.2017

Method comparison

"Fixed PDF"

- α_s(M_Z) dependence is quadratic, as expected for inclusive jet cross sections
- well-defined theory
- clear breakdown of PDF uncertainties
- introduces an additional procedural uncertainty due to $\alpha_s(M_Z)$ used in PDF fit
- possible bias towards assumed PDF

 α_s(M_Z)

choose this as main method

"PDF Interpolation"

- provides a way to include the uncertainty due to the choice of PDF $\alpha_s(M_Z)$ in the fit
- interpolation method needs to be defined (e.g. fit or splines)
 - spline interpolation not well suited for some PDFs (e.g. NNPDF)
- spline extrapolation may give unphysical results
- e does procedure reproduce PDF α_s dependence?

In most cases, both methods yield comparable results

Procedural PDF uncertainties

- additional PDF-related procedural uncertainties arise in addition to "PDF uncertainties" themselves:
 - 1 choice of PDF set
 - (2) choice of $\alpha_s(M_Z)$ assumed when fitting PDF

