

Determination of $\alpha_s(M_Z)$

in a fit to inclusive jet data from multiple experiments

DPG-Frühjahrstagung 2017, Münster

D. Britzger, K. Rabbertz, D. Savoiu, G. Sieber, M. Wobisch

March 27, 2017

Introduction

Why $\alpha_{\rm s}(M_{\rm Z})$?

- lacktriangledown $lpha_{
 m s}(\it{M}_{
 m Z})$ among least well known fundamental physical parameters
 - \rightarrow increased knowledge of $\alpha_s(M_Z)$ needed for precision QCD

How?

- use inclusive jet cross sections in hadron-induced collisions
 - \leftarrow jets abundantly produced at hadron colliders
 - \leftarrow directly sensitive to $\alpha_s(M_Z)$
 - ← well defined observable for any process
- theory calculations standard: NLO
 - → NNLO just around the corner

Objective

- develop a robust procedure to estimate $\alpha_s(M_Z)$
 - \rightarrow inclusion of more than one dataset
 - → flexibile and consistent treatment of theory (preparation for NNLO)

Main "ingredients"

Data

abundance of inclusive jet data from collider experiments:

ATLAS, CDF, CMS, DØ, H1, STAR, ZEUS...

- ightarrow available for data/theory comparisons and $lpha_{ extsf{S}}$ determinations
- inclusive jet measurement
 - → phase space, experimental uncertainties

Theory

- hard matrix element $\hat{\sigma}$
 - ightarrow sensitive to $lpha_{
 m s}({\it M}_{
 m Z})$
- convolution with PDFs
 - $ightarrow ~ lpha_{ extsf{S}}(extsf{M}_{ extsf{Z}})$ dependence

Strategy?

Strategy?

Better Strategy

experiment "A"
data

experiment "B" data

experiment "C"

data

unified theory

(N)NLO calculation ... non-perturbative corrections ... PDFs ... α_s evolution

common fit method

 χ^2 definition ... treatment of uncertainties on data, theory ... es

. estimation of uncertainties on $\alpha_{\mbox{\scriptsize s}}$

Better Strategy

experiment "A"

experiment "B" data experiment 'C'
data

unified theory

(N)NLO calculation ... non-perturbative corrections ... PDFs

PDFs ... α_s evolution

common fit method

 χ^2 definition ... treatment of uncertainties on data, theory

. estimation of uncertainties on $\alpha_{\mbox{\scriptsize s}}$

clean

consistent

convincing

First look: $\alpha_s(M_Z)$ at CMS, DØ and H1

- recent α_s extractions by CMS [3], DØ [1] and H1 [2]
- data from cover large and complementary phase space

Comparison of fit setups

	H1	DØ	CMS
theory predictions	NLO	approximate NNLO	NLO
$\alpha_s(M_Z)$ extraction procedure	direct χ² minimization	direct χ^2 minimization	"indirect" $\chi^2 \text{ minimization} \\ \text{(fit of parabola to discrete } \chi^2 \text{ points)}$
χ² definition	conventional χ² (log data – log theory) + relative uncertainties	modified χ² + nuisance parameters	conventional χ^2 (data – theory) + absolute uncertainties
uncertainty estimation	linear error propagation	nuisance parameters	 "Δχ² = +1" subtraction in quadrature "offset" method

Fit methods differ significantly!

- → "naive" combination of results (weighted average) not conclusive
- ightarrow need to extract $lpha_{s}(\textit{M}_{Z})$ using measurements from all experiments in a **unified** fit procedure

New fitting tool – Alpos

- **Alpos** → new modular C++ based fitting framework
 - used within H1 and CMS for PDF, electroweak and $\alpha_s(M_7)$ fits
- input format: experience with xFitter/HERAFitter

- multiple models of measurement probability distribution

[https://ekptrac.ekp.kit.edu/svn/Alpos]

Common fit method

- applying common method yields different $\alpha_s(M_Z)$ for the same dataset
- results remain in agreement with original publication
 - $ightarrow lpha_{
 m s}(\emph{M}_{
 m Z})$ values consistent due to common method

Common fit method

Result

$$\alpha_s(M_Z) = 0.1172 (15)_{\text{exp}} (14)_{\text{theo (except scale)}} (50)_{\text{scale}}$$

$$\left[\chi^2_{\text{min}} / \text{ndf} = 152.2 / 178 = 0.855 \right]$$

total uncertainty
(except scale)

 $\alpha_s(M)$

Conclusions

- developed method of extracting $\alpha_s(M_Z)$ from multiple inclusive jet data sets
- Alpos: recently developed, public fitting code
- applied to data from the H1, CMS and DØ experiments
 - → consistent results
 - \rightarrow agreement with world average for $\alpha_s(M_Z)$
 - → reduced experimental uncertainties
- scale uncertainties remain the largest single contribution to the total uncertainty

Outlook

- switch to NNLO accuracy
- include data from ATLAS, CDF, STAR, ZEUS...
- use insights gained for more complex QCD studies with data from multiple experiments

References I

- [1] V.M. Abazov et al. "Determination of the strong coupling constant from the inclusive jet cross section in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV". In: *Phys. Rev. D* 80 (2009), p. 111107. DOI: 10.1103/PhysRevD.80.111107. arXiv: 0911.2710 [hep-ex].
- [2] V. Andreev et al. "Measurement of multijet production in *ep* collisions at high Q^2 and determination of the strong coupling α_s ". In: *Eur. Phys. J. C* 75 (2015), p. 65. DOI: 10.1140/epjc/s10052-014-3223-6. arXiv: 1406.4709 [hep-ex].
- [3] Vardan Khachatryan et al. "Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \sqrt{s} = 7 TeV". In: *Eur. Phys. J. C* 75 (2015), p. 288. DOI: 10.1140/epjc/s10052-015-3499-1. arXiv: 1410.6765 [hep-ex].
- [4] K.A. Olive and others (Particle Data Group). "Review of Particle Physics". In: Chin. Phys. C 38 (2014). (2015 update), p. 090001. DOI: 10.1088/1674-1137/38/9/090001.

Many thanks to G. Flouris and P. Kokkas for their insights, as well as for providing the original CMS fitting code

statistical uncertainty
systematic uncertainty

References

References

Data/Theory

statistical uncertainty
systematic uncertainty

References

statistical uncertainty
systematic uncertainty

References

p_T / GeV/c

 10^{3}

Comparison of $\alpha_s(M_Z)$ extraction methods

H1 fit methodology

- iterative χ^2 minimization (MINUIT)
- $\chi^2_{\text{H1}}
 ightarrow \sum_{ij} (\ln m_i \ln t_i) \left[\mathbf{V}^{-1}_{(\text{rel})} \right]_{ij} (\ln m_j \ln t_j)$
- determine central value with experimental uncertainties only
- assume PDF without $\alpha_s(M_Z)$ dependence; use MSTW2008nlo with $\alpha_s(M_Z)=0.118$
- additional theory uncertainties: NP corr., PDF, PDF $\alpha_s(M_Z)$, PDF set, μ_r , μ_f
 - obtained through additional fits / linear error propagation

DØ fit methodology

• iterative χ^2 minimization (MINUIT)

$$\chi^2_{\text{DØ}} \rightarrow \sum_{i} \frac{\left[m_i - t_i \frac{1 + \sum_{k} \delta_{ik}^{(\text{NP)}} \left(\alpha_k^{(\text{NP)}} \right) + \sum_{l} \delta_{il}^{(\text{PDF)}} \left(\alpha_i^{(\text{PDF)}} \right)}{1 + \sum_{l} \delta_{ij}^{(\text{FDF)}} \left(\epsilon_i^{(\text{PDF)}} \right)} \right]^2}{\sigma_{i,\text{stat}}^2 + \sigma_{i,\text{uncorr}}^2}$$

- one nuisance parameter for each PDF eigenvector and each NP correction factor
- interpolate cross section predictions obtained for PDFs assuming different values of $\alpha_s(M_Z)$
- aNNLO (NLO predictions with threshold corrections + NNLO PDFs)
- 88 out of 110 data points excluded — correlations with MSTW2008 PDFs

Comparison of $\alpha_s(M_Z)$ extraction methods

CMS fit methodology

$$\chi^2_{ exttt{CMS}}
ightarrow \sum_{ij} (m_i - t_i) ig[(\mathbf{V}_{ exttt{exp}} + \mathbf{V}_{ exttt{PDF}})^{-1} ig]_{ij} (m_j - t_j)$$

- χ^2 is evaluated for each PDF in an $\alpha_s(M_Z)$ series
 - resulting $(\chi^2, \alpha_s(M_Z))$ points are assumed to lie on
 - fit of second-degree polynomial function \rightarrow central value and uncertainty on $\alpha_s(M_Z)$
- PDF: CT10nlo (results are also provided for MSTW2008 and NNPDF21)
- NP uncertainties obtained by performing additional fits with correlated variation of theory

Fit methods differ significantly!

a parabola

- ightarrow "naive" combination of results (weighted average) not very conclusive
- ightarrow need to extract $lpha_{\rm s}(M_{\rm Z})$ using measurements from all experiments in a **unified** fit procedure

PDF $\alpha_s(M_Z)$ dependence

How to express the $\alpha_s(M_Z)$ dependence of the cross section?

1 how to account for $\alpha_s(M_Z)$ dependence in PDFs?

Two methods are studied:

"Fixed PDF" (O)

(method used in H1 publication)

- calculate cross section using PDF for one chosen α_s(M_Z)
- prediction $\sigma(\alpha_s(M_Z))$ directly from fastNLO

"PDF Interpolation" (♦)

(method used in DØ publication)

- calculate cross section using PDF for each available α_s(M_Z)
- prediction $\sigma(\alpha_s(M_Z))$ from interpolation between the points

Method comparison

"Fixed PDF"

- well-defined theory
- clear breakdown of PDF uncertainties
- introduces an additional procedural uncertainty due to α_s(M_Z) used in PDF fit
- possible bias towards assumed PDF α_s(M_z)

"PDF Interpolation"

- provides a way to include the uncertainty due to the choice of PDF $\alpha_s(M_Z)$ in the fit
- interpolation method needs to be defined (e.g. fit or splines)
 - spline interpolation not well suited for some PDFs (e.g. NNPDF)
- spline extrapolation may give unphysical results
- odoes procedure reproduce PDF α_s dependence?

In most cases, both methods yield comparable results

Method comparison

"Fixed PDF"

- α_s(M_Z) dependence is quadratic, as expected for inclusive jet cross sections
- well-defined theory
- clear breakdown of PDF uncertainties
- introduces an additional procedural uncertainty due to α_s(M_Z) used in PDF fit
- possible bias towards assumed PDF α_s(M_Z)

choose this as main method

"PDF Interpolation"

- provides a way to include the uncertainty due to the choice of PDF $\alpha_s(M_Z)$ in the fit
- interpolation method needs to be defined (e.g. fit or splines)
 - spline interpolation not well suited for some PDFs (e.g. NNPDF)
- spline extrapolation may give unphysical results
- odoes procedure reproduce PDF α_s dependence?

In most cases, both methods yield comparable results

Procedural PDF uncertainties

- additional PDF-related procedural uncertainties arise in addition to "PDF uncertainties" themselves:
 - (1) choice of PDF set
 - (2) choice of $\alpha_s(M_Z)$ assumed when fitting PDF

Refits with unified procedure

Refit results

- all refits have reasonable χ^2 /ndf and compatible with each other
- χ^2 /ndf values at minimum:

H1
$$\chi^2/\text{ndf} = 23.1/23 = 1.004$$

DØ $\chi^2/\text{ndf} = 17.2/21 = 0.819$
CMS $\chi^2/\text{ndf} = 110/132 = 0.832$

Comparison to published values

good agreement

H1 method similar, but V_{PDF} and V_{NP} in χ^2 CMS, DØ change of fitting method → changes of fit

values and uncertainties

Final results remain comparable with each other and with original publication

→ Can proceed with combination

total uncertainty (except scale)