

α_s Determinations from CMS Status & Plans

Karlsruhe Institute of Technology

Klaus Rabbertz

Geneva, Switzerland, 13.10.2015

Outline

Abundant production of jets:

Jets at hadron colliders provide the highest reach ever to determine the strong coupling constant at high scales Q

Also learn about hard QCD, the proton structure, non-perturbative effects, and electroweak effects at high Q

Jets at the LHC

Abundant production of jets:

- Extract $\alpha_s(M_7)$, the least precisely known fundamental constant!

- No multi-scale problem in this "Mercedes" start event :-)

All Inclusive

5

High transverse Momenta

Klaus Rabbertz

Geneva, Switzerland, 13.10.2015 FCC-ee alpha s-Workshop

Inclusive Jets

Agreement with predictions of QCD at NLO over many orders of magnitude in cross section and even beyond 2 TeV in jet p_T and for rapidities |y| up to ~ 5 Similar picture at 7 TeV, 8 TeV (left) or NEW 2.76 TeV (right)

CMS-PAS-FSQ-12-031 (2013), CMS-PAS-SMP-14-017 (2015)

Inclusive Jets + $a_s \& PDFs$

Simultaneous fit of α_s & PDFs possible combining HERA 1 DIS & CMS jet data using HERAFitter Tool

$$Q = p_{\mathrm{T,jet}}$$

Data vs. NLO+PS \otimes EW corrections \rightarrow impact visible in norm. dijet angular obs.

Inclusive Jets + α_{c} & PDFs

CONS. THE REPORT OF THE REPORT

Simultaneous fit of α_s & PDFs possible combining HERA 1 DIS & CMS jet data using HERAFitter Tool

Data vs. NLO+PS \otimes EW corrections \rightarrow impact visible in norm. dijet angular obs.

Details: α_s from inclusive Jets

y range	No. of data points	$\alpha_S(M_Z)$;)	$\chi^2/n_{ m dof}$	Fit results in separate	/ bins		
y < 0.5	33 0.11		± 0.0024 (exp) ± 0.0030 (PDF)	16.2/32	PDF: CT10-NLO			
		± 0.00	$008 (NP)^{+0.0045}_{-0.0027} (scale)$		(best consistency	hotwoon		
$0.5 \le y < 1.0$	30	0.1182	± 0.0024 (exp) ± 0.0029 (PDF)	25.4/29	fit and DDC proformed or (MA)			
		± 0.00	$008 (\text{NP})^{+0.0050}_{-0.0025} (\text{scale})$		fit and PDF preferr	$\alpha_{s}(W_{z}))$		
$1.0 \le y < 1.5$	27	0.1165	$\pm 0.0027 \text{ (exp)} \pm 0.0024 \text{ (PDF)}$	9.5/26				
		± 0.00	$008 (\text{NP})^{+0.0043}_{-0.0020} (\text{scale})$					
$1.5 \le y < 2.0$	24	0.1146	± 0.0035 (exp) ± 0.0031 (PDF)	20.2/23				
		± 0.00	$13 (\text{NP})^{+0.0037}_{-0.0020} (\text{scale})$					
$2.0 \leq y < 2.5$	19	0.1161	± 0.0045 (exp) ± 0.0054 (PDF)	12.6/18				
		± 0.00	$115 (\text{NP})^{+0.0034}_{-0.0032} (\text{scale})$					
y < 2.5	133	0.1185	± 0.0019 (exp) ± 0.0028 (PDF)	104.1/132				
		± 0.00	$004 (\text{NP})^{+0.0053}_{-0.0024} (\text{scale})$		$\alpha_S(M_Z)$	$\chi^2/n_{ m dof}$		
			CT10-NLO		$0.1185 \pm 0.0019 (exp) \pm 0.0028 (PDF)$	104.1/132		
					$\pm 0.0004 (\text{NP})^{+0.0053}_{-0.0024} (\text{scale})$			
Fit results for all y bins			NNPDF2.1-NLO		0.1150 ± 0.0015 (exp) ± 0.0024 (PDF)	103.5/132		
					$\pm 0.0003 (\text{NP})^{+0.0025}_{-0.0025} (\text{scale})$			
with other PDFs			MSTW2008-NLO		$0.1159 \pm 0.0012 \text{ (exp)} \pm 0.0014 \text{ (PDF)}$	107.9/132		
					$\pm 0.0001 (\text{NP})^{+0.0024}_{-0.0030} (\text{scale})$			
			CT10-NNLO		$0.1170 \pm 0.0012 \text{ (exp)} \pm 0.0024 \text{ (PDF)}$	105.7/132		
					$\pm 0.0004 (\text{NP})^{+0.0044}_{-0.0030} (\text{scale})$			
			NNPDF2.1-NNLO		$0.1175 \pm 0.0012 \text{ (exp)} \pm 0.0019 \text{ (PDF)}$	103.0/132		
					$\pm 0.0001 (\text{NP})^{+0.0018}_{-0.0020} (\text{scale})$			
			MSTW2008-NNLO		$0.1136 \pm 0.0010 \text{ (exp)} \pm 0.0011 \text{ (PDF)}$	108.8/132		
					$\pm 0.0001 (\text{NP})^{+0.0019}_{-0.0024} (\text{scale})$			
CIVIS, EPJ	IC 75 (2015) 288.				0.0024			
K	Claus Rabbertz		Geneva Switzerland	13 10 20	15 FCC-ee alpha s-Workst	10p 9		

Inclusive Jet Ratios: "2.76 / 8.0"

New from CMS:

- cross sections at 2.76 TeV

- ratios to 8 TeV Shown

- double ratio to theory

Ratio at E_{cms} = 2.76 and 8.0 TeV \rightarrow at least partial cancellation of uncertainties \rightarrow more precise comparisons

Multi-Jets and α_s

Azimuthal Decorrelations at 8 TeV

3-Jet Mass

3- to 2-Jet Ratios

High Masses

Fits with top-pair Production

ttbar Dilepton X Section in Comparison

 $\sigma_{t\bar{t}} = 245.6 \pm 1.3 (stat) \pm {}^{6.6}_{5.5} (syst) \pm 6.5 (lumi) \text{ pb}$ at $\sqrt{s} = 8 \text{ TeV}$,

Klaus Rabbertz

17

CMS-TOP-13-004 (2012).

Hadron Collider Summary

Perspectives with CMS and Beyond

Klaus Rabbertz

Geneva, Switzerland, 13.10.2015

FCC-ee alpha s-Workshop

<u>Two goals for $\alpha_{\underline{s}}$:</u>

- 1. Measure the running of $\alpha_s(Q)$ up to the highest scales possible \rightarrow In CMS mostly looked into $\alpha_s(Q)$!
- 2. Measure $\alpha_s(M_z)$ as precisely as possible
- → For α_s(M_z) might want to stay at minimal JEC uncertainty: 200 – 800 GeV, central rapidity

Better in: JEC uncertainty PDF uncertainty Evolution to M_z Worse in: NP effects

Perspectives & Educated Guesses

- Experiment:
 - **Done:** Observables $\sigma \sim \alpha_s^2$, α_s^3 ; $R_{3/2} \sim \alpha_s$; 7 TeV; full phase space
 - 8 TeV data: Reduce experimental uncertainty by some permille?
 - Best JEC phase space: Another reduction by some permille?
 - Other observables: Ratios (n+m) / n jets (incl. γ , W, Z), $R_{\Delta\phi}$, $R_{\Delta R}$ (\rightarrow D0) Normalized cross sections
- Theory:
 - Scales: NNLO important (see Joao's Talk) reduction by some percent!?
 - PDFs: Much improved after LHC I, also HERA 2 data available
 - Better known gluon (Attention circularity jets \rightarrow g(x) & jets $\rightarrow \alpha_s$)
 - Fits combining observables at various \sqrt{s} to disentangle g(x), M_t, α_s
 - NNLO ratios?

Summary

- LHC at 7 TeV and 8 TeV enables measurements up to scales of 2 TeV
- 13 TeV data yet to come
- Theory at NNLO QCD + electroweak corrections are a must!
- Typical uncertainties on $\alpha_s(M_z)$:
 - ➡ Experimental: ~ 1 2 %
 - → PDF: ~ 1 2 %
 - **Scale:** 3 5 %
 - Nonpert. Effects: < 1 %</p>
- Beyond CMS:
 - Combined fits of ATLAS & CMS (LHC) measurements
 - Combined fits of HERA, Tevatron & LHC measurements
- CHALLENGE

25

Triple Five:

- Within the next FIVE years
- Check running of $\alpha_s(Q)$ up to FIVE TeV and
- Determine $\alpha_s(M_z)$ to FIVE permille accuracy

Thank you for your attention and the invitation to speak here!

Backup Slides

27

Base set	Refs.	Evol.	N_f	$M_{\rm t}~({\rm GeV})$	$M_{\rm Z}~({\rm GeV})$	$\alpha_S(M_Z)$	$\alpha_S(M_Z)$ range
ABM11	[17]	NLO	5	180	91.174	0.1180	0.110-0.130
ABM11	[17]	NNLO	5	180	91.174	0.1134	0.104-0.120
CT10	[18]	NLO	≤ 5	172	91.188	0.1180	0.112-0.127
CT10	[18]	NNLO	≤ 5	172	91.188	0.1180	0.110-0.130
HERAPDF1.5	[19]	NLO	≤ 5	180	91.187	0.1176	0.114-0.122
HERAPDF1.5	[19]	NNLO	≤ 5	180	91.187	0.1176	0.114-0.122
MSTW2008	[20,21]	NLO	≤ 5	10^{10}	91.1876	0.1202	0.110-0.130
MSTW2008	[20,21]	NNLO	≤ 5	10^{10}	91.1876	0.1171	0.107-0.127
NNPDF2.1	[22]	NLO	≤ 6	175	91.2	0.1190	0.114-0.124
NNPDF2.1	[22]	NNLO	≤ 6	175	91.2	0.1190	0.114-0.124

CMS, EPJC 75 (2015) 288.

Klaus Rabbertz

Geneva, Switzerland, 13.10.2015 FCC-ee alpha_s-Workshop

Details: α_s from inclusive Jets

28

Fit results in separate |y| bins PDF: CT10-NNLO

y range	No. of data points	$\alpha_S(M_Z)$	$\chi^2/n_{\rm dof}$
y < 0.5	33	$0.1180 \pm 0.0017 \text{ (exp)} \pm 0.0027 \text{ (PDF)}$	15.4/32
		$\pm 0.0006 (\text{NP})^{+0.0031}_{-0.0026} (\text{scale})$	
$0.5 \le y < 1.0$	30	0.1176 ± 0.0016 (exp) ± 0.0026 (PDF)	23.9/29
		$\pm 0.0006 (\text{NP})^{+0.0033}_{-0.0023} (\text{scale})$	
$1.0 \leq y < 1.5$	27	$0.1169 \pm 0.0019 \text{ (exp)} \pm 0.0024 \text{ (PDF)}$	10.5/26
		$\pm 0.0006 (\text{NP})^{+0.0033}_{-0.0019} (\text{scale})$	
$1.5 \le y < 2.0$	24	0.1133 ± 0.0023 (exp) ± 0.0028 (PDF)	22.3/23
		$\pm 0.0010 (\text{NP})^{+0.0039}_{-0.0029} (\text{scale})$	
$2.0 \leq y < 2.5$	19	0.1172 ± 0.0044 (exp) ± 0.0039 (PDF)	13.8/18
		$\pm 0.0015 (\text{NP})^{+0.0049}_{-0.0060} (\text{scale})$	
y < 2.5	133	0.1170 ± 0.0012 (exp) ± 0.0024 (PDF)	105.7/132
		$\pm 0.0004 (\mathrm{NP})^{+0.0044}_{-0.0030}$ (scale)	

CMS, EPJC 75 (2015) 288.

Klaus Rabbertz

Details: 3-Jet Mass

Fit results in separate |y| bins (CT10-NLO) and with other PDFs

<i>m</i> ³ (GeV)	$\langle Q \rangle$ (G	ieV)	$\chi^2/n_{\rm dof}$	$\alpha_S(M_Z)$	$\pm(\exp)$	\pm (PDF)	\pm (NP)	±(scale)
664–794	361		4.5/3	0.1232	+0.0040 -0.0042	+0.0019 -0.0016	+0.0008 -0.0007	+0.0079 -0.0044
794–938	429		7.8/3	0.1143	+0.0034 -0.0033	+0.0019 -0.0016	± 0.0008	+0.0073 -0.0042
938-1098	504		0.6/3	0.1171	+0.0033 -0.0034	± 0.0022	± 0.0007	+0.0068 -0.0040
1098-1369	602		2.6/5	0.1152	± 0.0026	+0.0027 -0.0026	$+0.0008 \\ -0.0007$	$+0.0060 \\ -0.0027$
1369–2172	785		8.8/13	0.1168	$+0.0018 \\ -0.0019$	$+0.0030 \\ -0.0031$	+0.0007 -0.0006	$+0.0068 \\ -0.0034$
2172-2602	1164		3.6/5	0.1167	+0.0037 -0.0044	$+0.0040 \\ -0.0044$	± 0.0008	$+0.0065 \\ -0.0041$
2602-3270	1402		5.5/7	0.1120	+0.0043 -0.0041	+0.0056 -0.0040	± 0.0001	$+0.0088 \\ -0.0050$
$ y _{\max} < 1$	413		10.3/22	0.1163	$+0.0018 \\ -0.0019$	± 0.0027	± 0.0007	+0.0059 -0.0025
$1 \leq y _{\max} < 2$	441		10.6/22	0.1179	$+0.0018 \\ -0.0019$	± 0.0021	± 0.0007	+0.0067 -0.0037
$ y _{\max} < 2$	438		47.2/45	0.1171	± 0.0013	± 0.0024	± 0.0008	+0.0069 -0.0040
PDF set		$\chi^2/n_{ m dof}$	$\alpha_S(N)$	$M_{\rm Z})$	±(exp)	\pm (PDF)	\pm (NP)	±(scale)
CT10-NLO		47.2/45	0.11	71	±0.0013	± 0.0024	± 0.0008	+0.0069 -0.0040
CT10-NNLO		48.5/45	0.11	65	+0.0011 -0.0010	$+0.0022 \\ -0.0023$	$+0.0006 \\ -0.0008$	+0.0066 -0.0034
MSTW2008-NLO		52.8/45	0.11	55	+0.0014 -0.0013	$+0.0014 \\ -0.0015$	$+0.0008 \\ -0.0009$	+0.0105 -0.0029
MSTW2008-NNLO		53.9/45	0.11	83	+0.0011 -0.0016	+0.0012 -0.0023	+0.0011 -0.0019	+0.0052 -0.0050
HERAPDF1.5-NNLO		49.9/45	0.11	43	± 0.0007	$+0.0020 \\ -0.0035$	+0.0003 -0.0008	+0.0035 -0.0027
NNPDF2.1-NNLO		51.1/45	0.11	64	± 0.0010	$+0.0020 \\ -0.0019$	$+0.0010 \\ -0.0009$	$+0.0058 \\ -0.0025$

Klaus Rabbertz

Geneva, Switzerland, 13.10.2015

FCC-ee alpha_s-Workshop

Fit results in separate Q ranges (NNPDF21-NNLO) and with other PDFs

$\langle p_{\mathrm{T1,2}} \rangle$ range (GeV)	Q (GeV	7)	$\alpha_S(M_Z)$		$\alpha_S(Q)$		No. of points	data	$\chi^2/N_{\rm dof}$	
420-600	474		0.1147 ± 0.0)061	0.0936 ± 0.0	041	6		4.4/5	
600-800	664		0.1132 ± 0.0	0050	0.0894 ± 0.0	031	5		5.9/4	
800–1390	896		0.1170 ± 0.0	0058	0.0889 ± 0.0	034	10		5.7/9	
$\langle p_{T1,2} \rangle$ range (GeV)	Q (GeV)	$\alpha_S(M_Z)$	exp.	PDF	theory					
420-600	474	0.1147	±0.0015	±0.001	5 ±0.0057					
600-800	664	0.1132	± 0.0018	± 0.002	± 0.0039					
800–1390	896	0.1170	± 0.0024	± 0.002	± 0.0048	$\mu_r/\langle p$	Τ1,2	μ_f/\langle	$p_{T1,2}$	$\alpha_S(M_Z) \pm (\exp.)$
MSTW200	$08: \alpha_S(M)$	$(I_{\rm Z}) = 0.$	1141 ± 0.0	022 (ex	p.),	1 1/2 1/2		1 1/2		0.1148 ± 0.0014 0.1198 ± 0.0021 0.1149 ± 0.0014
CII	$0. \alpha_S(N)$	$I_{\rm Z}) \equiv 0.$	1155 ± 0.0	019 (ex	p.),	1/2		1/2		0.1149 ± 0.0014 0.1149 ± 0.0014
						1		2		0.1150 ± 0.0015
						2		1		0.1159 ± 0.0014
CMS, EPJC	73 (2013) 2	604.				2		2		0.1172 ± 0.0018
K	laus Rab	bertz	G	eneva,	Switzerland	d, 13.1	0.2015		FCC-ee a	alpha_s-Workshop

30

 $\chi^2/N_{\rm dof}$

22.0/20

30.6/20

22.2/20

22.2/20

21.9/20

20.7/20

21.3/20

PDG Summary

a_s Projections

Still at LHC:

Only jets probe running α_s at highest scales

< 1% uncertainty at M_z challenging, but not impossible

Need NNLO and improved PDFs (gluon) plus some experimental optimization

Method	Current relative precision	Future relative precision	
at a - out shapes	$expt \sim 1\%$ (LEP)	< 1% possible (ILC/TLEP)	
e e evt snapes	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27]	$\sim 1\%$ (control n.p. via $Q^2\text{-dep.})$	~10/
e ⁺ e ⁻ jot rates	$expt \sim 2\%$ (LEP)	< 1% possible (ILC/TLEP)	~ 1 70
e e jet lates	thry $\sim 1\%$ (NNLO, n.p. moderate) [28]	$\sim 0.5\%$ (NLL missing)	
procision FW	$expt \sim 3\% (R_Z, LEP)$	0.1% (TLEP [10]), $0.5%$ (ILC [11])	<1%
	thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9,29]	$\sim 0.3\%~({\rm N}^{4}{\rm LO}$ feasible, $\sim 10~{\rm yrs})$	\$170
τ docave	expt $\sim 0.5\%$ (LEP, B-factories)	< 0.2% possible (ILC/TLEP)	
/ decays	thry $\sim 2\%$ (N ³ LO, n.p. small) [8]	$\sim 1\%~({\rm N}^4{\rm LO}$ feasible, $\sim 10~{\rm yrs})$	
en collidors	$\sim 1-2\%$ (pdf fit dependent) [30, 31]	0.1% (LHeC + HERA [23])	<1%
ep conders	(mostly theory, NNLO) [32, 33]	$\sim 0.5\%$ (at least N^3LO required)	
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)	< 1% challenging	~1%
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17, 21, 34]	(NNLO jets imminent [22])	1 /0
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)	$\sim 0.3\%$	~0 5 0/
	(limited by accuracy of pert. th.) [35–37]	$(\sim 5 \text{ yrs } [38])$	~0. 5%

Snowmass QCD Report, arXiv:1310.5189.

Klaus Rabbertz

