Dijet Angular distributions at $\sqrt{s} = 14 \text{TeV}$

Nele Boelaert

Lund University

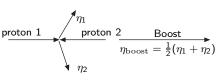
July 16, 2009

Table of contents

- Introduction
 - Dijet angular distributions
 - Selection cuts
- QCD up to NLO
 - Distributions
 - Systematic uncertainties
- Conclusions

Introduction

Lab Frame

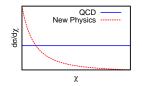


Center-of-mass Frame $\eta^* = \frac{1}{2}(\eta_1 - \eta_2)$ $\hat{\theta}$

- Dijet final state, in pp-collisions through qq, qg and gg interactions.
- Variable of interest: $\chi = \exp(|\eta_1 \eta_2|) = \frac{1+|\cos(\theta)|}{1-|\cos(\hat{\theta})|}$
- Take bins in dijet invariant mass M_{jj} .

At LO:
$$M_{jj} = x_1 x_2 s = p_T(\sqrt{\chi} + 1/\sqrt{\chi})$$

• Calculate dijet angular distribution: $d\sigma/d\chi$ vs χ



- QCD curve is rather flat (Rutherford scattering)
- lacktriangle New physics usually more isotropic events \Rightarrow peak at small χ
- New physics? Gravitational effects from large extra dimensions, quark compositness, ...

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 亳|〒 釣९()

Selection cuts

- 4 Mass (M_{ii}) bins: [0.5, 1], [1, 2], [2, 3] and > 3TeV
- Detector: can measure η up to $\eta_{\rm max}$, in this study $\eta_{\rm max} = 3.1$ or 4.0
- Physics: 2 orthogonal selections cuts (see backup slides for more info):

$$|\eta_1 + \eta_2| < c \tag{1}$$

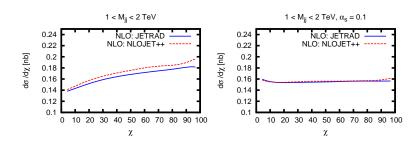
$$|\eta_1 - \eta_2| < 2\eta_{\text{max}} - c \iff \chi < \exp(2\eta_{\text{max}} - c),$$
 (2)

with $c=1.5 \Rightarrow \chi_{\rm max} pprox$ 100 or 600.

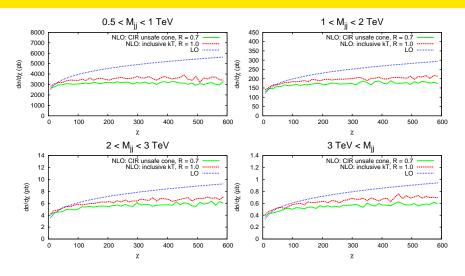
QCD up to NLO: JETRAD and NLOJET++

2 programs for NLO calculations: JETRAD and NLOJET++

- JETRAD: phase space slicing
- NLOJET++: applies the Catani-Seymour dipole subtraction scheme with some modifications introduced because of computational reasons
- NLOJET++ uses different parametrization of α_s than JETRAD (left plot), difference disappears when with fixed $\alpha_s = 0.1$ (right plot)



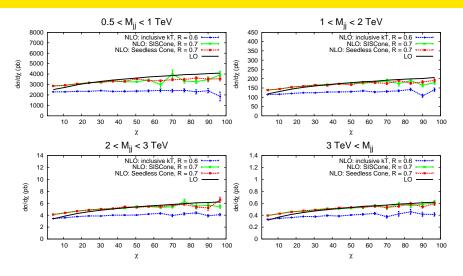
NLO calculations with JETRAD



- Calculations done with seeded cone 0.7 and inclusive k_T 1.0
- 4 different mass bins, $\chi < 600$

At NLO, the different jet algorithm tends to give the same shape of the distributions, but a different normalization

NLO calculations with NLOJET++



- jet algorithms: seedless cone 0.7 with overlap 0.5 and SISCone 0.7 with overlap 0.75
- lacktriangle 4 different mass bins, $\chi < 100$

Systematic uncertainties

Uncertainties from theoretical calculations:

- renormalization (μ_R) and factorization scale (μ_F)
- PDFs

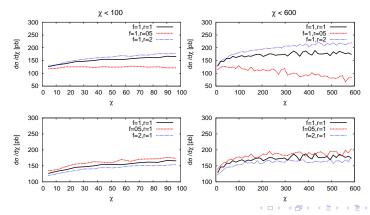
Experimental uncertainties:

• Dominating uncertainty from jet energy calibration \Rightarrow normalize distributions to unit area to reduce the impact $((1/\sigma)d\sigma/d\chi \text{ vs } \chi)$

Systematic uncertainty coming from μ_R and μ_F

How to investigate?

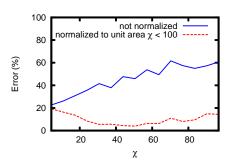
- Take $\mu_{R,F} = 0.5, 1, 2 \times p_T$ highest jet \rightarrow 9 possible combinations
- Figure: mass bin 1 < M_{jj} < 2 TeV, r and f are the fraction of the transverse momentum of the highest jet at which respectively μ_R and μ_F are evaluated. Left: χ < 100, right: χ < 600.



Systematic uncertainty coming from μ_R and μ_F

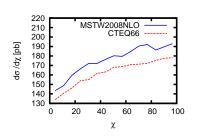
• Different μ_F mainly influences the absolute normalization, while μ_R influences both shape and normalization.

Error coming from choice of μ_R and μ_R :

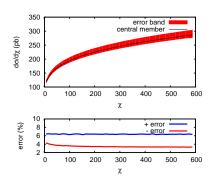


Systematic uncertainty coming from PDFs

 Study 2 different PDF-sets: CTEQ66 and MSTW2008NLO in [1, 2]TeV mass bin.

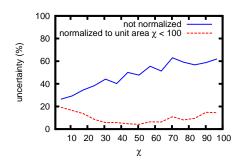


 For CTEQ66: study all 2N = 44 error members, use Master Equation (hep-ph/0611148v1) to calculate uncertainty:



QCD Uncertainty

- ullet Combining uncertainties from μ_R and μ_F , and intrinsic uncertainty from the CTEQ66 PDF in quadrature
- \bullet Uncertainty both on distributions normalized to unit area $\chi < 100$ and not normalized
- Dominating uncertainy from μ_R



Conclusions and outlook

Dijet angular distributions

- $d\sigma/d\chi$ vs χ in bins of dijet invariant mass
- allows to distinguish more isotropic scattering (new physics) from Rutherford scattering (QCD)

QCD calculations up to NLO, using JETRAD and NLOJET++

- NLOJET++ and JETRAD agree reasonably well (difference in parametrization of α_s)
- lacktriangle LO and NLO agree quite well at low χ , but differ at large χ
- Different jet algorithms give different normalization
- lacktriangle Biggest uncertainty coming from the choice of μ_R
- ullet Choice of μ_F and the PDF-sets has mainly impact on absolute normalization, minimalize the uncertainty by normalizing the distributions
- Biggest uncertainty at large χ .

Outlook

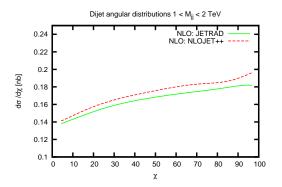
• ATLAS: early (2010) measurement ($\chi < 30$)

NLOJET++ vs JETRAD

• NLOJET++ uses different parametrization of α_s than JETRAD

• NLOJET++:
$$\alpha_s(Q) = \frac{4\pi}{\beta_0 \ln(Q^2/\Lambda^2)} \left(\frac{1}{1 + \frac{2\beta_1}{\beta_0^2} \frac{\ln \ln(Q^2/\Lambda^2)}{\ln(Q^2/\Lambda^2)}}\right)$$

• JETRAD:
$$\alpha_s(Q) = \frac{4\pi}{\beta_0 \ln(Q^2/\Lambda^2)} \left(1 - \frac{2\beta_1}{\beta_0^2} \frac{\ln \ln(Q^2/\Lambda^2)}{\ln(Q^2/\Lambda^2)}\right)$$



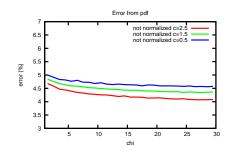
Selection cuts

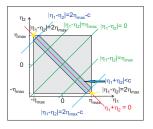
Two orthogonal selection cuts:

$$|\eta_1 + \eta_2| < c \tag{3}$$

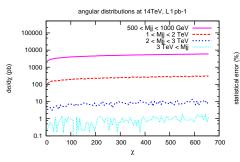
$$|\eta_1 - \eta_2| < 2\eta_{\text{max}} - c \iff \chi < \exp(2\eta_{\text{max}} - c) \tag{4}$$

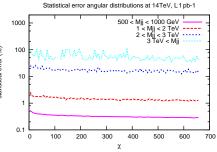
ullet Parameter c: trade-off between measurable χ -range and error coming from statistics and PDFs





Statistics at 1 pb^{-1}

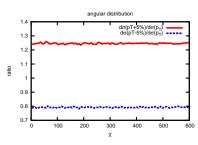




Impact Jet Energy Scale (JES)

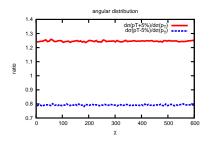
Simple test:

- Generate events with pythia 6.4
- 2 Calculate $d\sigma/d\chi$ vs χ for $1 < M_{jj} < 2$ TeV
- **3** For each event: increase jet p_T with +5%: $p_T = p_T + 5\%$
- igotimes Calculate d $\sigma_{
 m increase}/{
 m d}\chi$ for $1 < M_{jj} < 2$ TeV
- **5** Take ratio of differential cross-sections: $(d\sigma_{\rm increase}/d\chi)/(d\sigma/d\chi)$ (red curve)
- Repeat steps 3.-4.-5. with $p_T 5\%$ (blue curve)



Impact Jet Energy Scale (JES)

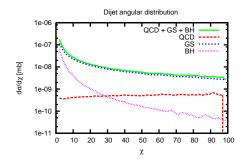
- Effect due to binning in $< M_{jj}$
- Shape of distributions not effected by a global (η independent) error on JES \Rightarrow normalize distributions: $(1/\sigma) d\sigma/d\chi$ vs χ
- ullet Remaining η dependence of JES



Gravitational scattering and black hole formation in large extra dimensions

- References: hep-ph/9811350, hep-ph/9811291, hep-ph/0608080, hep-ph/0608210
- ADD model including black hole formation (BH) and an effective field theory of gravity to describe gravitational scattering (GS)

Mass bin 3 TeV $< M_{jj}$, 6 extra dimensions and $M_{\rm Planck} \approx 1$ TeV:



Large extra dimensions: the ADD model

- \bullet Large hierarchy found in nature: EW-scale $\sim 10e2$ GeV, Planck Scale $\sim 10e^{19}$ GeV.
- Gravitational potential in world with n extra dimensions with compactification radius R:

$$V(r) \propto egin{cases} rac{1}{M_P^{n+2}} rac{m}{r^{n+1}} & r \ll R \ rac{1}{M_P^{n+2}R^n} rac{m}{r} & r \gg R \end{cases}$$

 $M_P = \text{fundamental Planck scale}$

• Compared with normal 4D-potential with 4D-Planck scale: $V(r) = \frac{\bar{h}c}{M_{PM}^2} \frac{m}{r}$

$$M_{P4}^2 \sim M_P^{2+n} R^n$$

- $\bullet \ \, \to \text{Fundamental Planck scale can be small, while observed 4D-Planck scale is large}$
- Arkani-Hamed Dimopoulus Dvali (ADD) model = existence of large extra spatial dimensions in which gravity is allowed to propagate, while the SM fields are confined to a 4D-membrane

The ADD model

- Gravitational scattering through the exchange of virtual Kaluza-Klein (KK) modes
- Black Holes

