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Introduction Dijet angular distributions

Introduction
Lab Frame Center-of-mass
Frame  p* = 3(m — )

m

proton 1 proton 2 Boost %

— e > —_—
Mboost = 5(771 + 772) /

m —n*

@ Dijet final state, in pp-collisions through qq, qg and gg interactions.
@ Variable of interest: x = exp(|m — n2|) = %
@ Take bins in dijet invariant mass Mj;.

At LO: Mﬂ = X1X2S = pT(\/Y—F 1/&)
@ Calculate dijet angular distribution: do/dx vs x

CD — @ QCD curve is rather flat (Rutherford scattering)

Q
New Physics ---------
@ New physics usually more isotropic events = peak at small x

doldy

@ New physics? Gravitational effects from large extra
dimensions, quark compositness, ...

X
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Introduction Selection cuts

Selection cuts

@ 4 Mass (Mj) bins: [0.5,1], [1,2], [2,3] and > 3TeV
@ Detector: can measure 1 up to Mmax, in this study Nmax =3.1 or 4.0
@ Physics: 2 orthogonal selections cuts (see backup slides for more info):
Im +m| <c (1)
Im = 12| < 2Mmax — ¢ <= X < exp(2nmax — €), (2)

with ¢ = 1.5 = Xmax ~ 100 or 600.
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Dl
QCD up to NLO: JETRAD and NLOJET++

2 programs for NLO calculations: JETRAD and NLOJET++
@ JETRAD: phase space slicing

@ NLOJET++: applies the Catani-Seymour dipole subtraction scheme with some

modifications introduced because of computational reasons

@ NLOJET++ uses different parametrization of as than JETRAD (left plot),
difference disappears when with fixed as = 0.1 (right plot)
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NLO calculations with JETRAD

do/dy (pb)

doidy (pb)

05<M;<1TeVv

1<M;<2TeV

NLO: CIR unsafe cone, R =0.7
NLO: inclusive kT, R = 1.

doidy (pb)

NLO: CIR unsafe cone, R
i R

NLO: inclusive KT,

600
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X X
2<M;<3TeVv 3TeV <My
14
NLO: CIR unsafe cone, R = NLO: CIR unsafe cone, R
12 NLO: inclusive kT, R = NLO: inclusive kT, R

doidy (pb)

0.2

@ Calculations done with seeded cone 0.7 and inclusive kT 1.0
@ 4 different mass bins, x < 600

@ At NLO, the different jet algorithm tends to give the same shape of the distributions, but a different normalization
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Distributions
NLO calculations with NLOJET+-+
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@ jet algorithms: seedless cone 0.7 with overlap 0.5 and SISCone 0.7 with overlap 0.75
@ 4 different mass bins, x < 100
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Systematic uncertainties

Uncertainties from theoretical calculations:
@ renormalization (pg) and factorization scale (pf)
o PDFs

Experimental uncertainties:

@ Dominating uncertainty from jet energy calibration = normalize
distributions to unit area to reduce the impact ((1/0)do/dx vs x)
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Systematic uncertainty coming from ug and ur

How to investigate?

@ Take pur,r = 0.5,1,2 X pr highest jet — 9 possible combinations

@ Figure: mass bin 1 < Mj; <2 TeV, r and f are the fraction of the transverse

momentum of the highest jet at which respectively pur and pr are evaluated. Left:
x < 100, right: x < 600.
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Systematic uncertainty coming from ug and ur

@ Different s mainly influences the absolute normalization, while pg influences both

shape and normalization.

Error coming from choice of ugr and pg:
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Systematic uncertainty coming from PDFs

@ For CTEQG66: study all 2N = 44 error
members, use Master Equation

@ Study 2 different PDF-sets: CTEQ66 (hep-ph/0611148v1) to calculate

and MSTW2008NLO in [1,2]TeV uncertainty:
mass bin:
350 error band  m—
220 T T T T 300 central member
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QCD up to NLO Systematic uncertainties

QCD Uncertainty

@ Combining uncertainties from ug and pr, and intrinsic uncertainty from the

CTEQ66 PDF in quadrature

@ Uncertainty both on distributions normalized to unit area x < 100 and not

normalized

@ Dominating uncertainy from pg
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Conclusions and outlook

Dijet angular distributions

@ do/dx vs x in bins of dijet invariant mass

@ allows to distinguish more isotropic scattering (new physics) from Rutherford scattering

(QCD)

QCD calculations up to NLO, using JETRAD and NLOJET++

NLOJET++ and JETRAD agree reasonably well (difference in parametrization of as)
LO and NLO agree quite well at low x, but differ at large x

Different jet algorithms give different normalization

Biggest uncertainty coming from the choice of ug

© © ¢ ¢ ¢

Choice of pg and the PDF-sets has mainly impact on absolute normalization, minimalize
the uncertainty by normalizing the distributions

Biggest uncertainty at large x.

Outlook
@ ATLAS: early (2010) measurement (x < 30)
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NLOJET++ vs JETRAD

@ NLOJETH+ uses different parametrization of as than JETRAD
® NLOJET++: as(Q)

@ JETRAD: as(Q)

do /dx [nb]
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Selection cuts

@ Two orthogonal selection cuts:

[m +m| <c
[ — M2| < 2Nmax — € <= X < exp(2Nmax — C)

@ Parameter c¢: trade-off between measurable x-range and error coming from
statistics and PDFs

Error from pdf

MMl =2N0aC
N1l =Nmax

N2

T T T

not normalized c=2.5
6.5 |- not normalized c=1.5 -
not normalized c=0.5

[nym,l= 0
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45 _\H_\_
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Statistics at 1 pb~!

angular distributions at 14TeV, L 1pb-1
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Impact Jet Energy Scale (JES)

Simple test:

@ Generate events with pythia 6.4

@ Calculate do/dy vs x for 1 < Mj; < 2 TeV
© For each event: increase jet pr with +5%: pt = p7 + 5%
Q Calculate doincrease/dx for 1 < Mj < 2 TeV
© Take ratio of differential cross-sections: (d@increase/dX)/(do/dx) (red curve)
©Q Repeat steps 3.-4.-5. with pr — 5% (blue curve)
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Impact Jet Energy Scale (JES)

o Effect due to binning in < Mj;

@ Shape of distributions not effected by a global (1 independent) error
on JES = normalize distributions: (1/0)do/dx vs x

@ Remaining 1 dependence of JES

angular distribution
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Gravitational scattering and black hole formation in large
extra dimensions

@ References: hep-ph/9811350, hep-ph/9811291, hep-ph/0608080,
hep-ph/0608210

@ ADD model including black hole formation (BH) and an effective field
theory of gravity to describe gravitational scattering (GS)

Mass bin 3 TeV < Mj;, 6 extra dimensions and Mpjanac =~ 1 TeV:

Dijet angular distribution
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Large extra dimensions: the ADD model

@ Large hierarchy found in nature: EW-scale ~ 10e2 GeV, Planck Scale ~ 10e'°

GeV.
@ Gravitational potential in world with n extra dimensions with compactification
radius R:
V(r) « P

Mp = fundamental Planck scale

hc m

2
Mg, 1

@ Compared with normal 4D-potential with 4D-Planck scale: V(r) =
M,234 ~ M[%+an

@ — Fundamental Planck scale can be small, while observed 4D-Planck scale is large

@ Arkani-Hamed Dimopoulus Dvali (ADD) model = existence of large extra spatial
dimensions in which gravity is allowed to propagate, while the SM fields are
confined to a 4D-membrane



The ADD model

o Gravitational scattering through the exchange of
virtual Kaluza-Klein (KK) modes

@ Black Holes




	Introduction
	Dijet angular distributions
	Selection cuts

	QCD up to NLO
	Distributions
	Systematic uncertainties

	Conclusions
	Appendix
	Backup slides


