

Galileo Galilei Institute

Jet Physics with CMS

Klaus Rabbertz University of Karlsruhe

Klaus Rabbertz

Florence, Italy, 15.09.2009

Galilei Galileo Institute

- LHC Start-up
- The CMS Detector
- Jet Algorithms
- Expected Jet Performance in CMS
- Jets in QCD Analyses ...
- ... and beyond

The Large Hadron Collider

Four interaction points with the experiments: Lake Geneva

LHC Design Parameters:

	pp	AA
Energy/Nucleon/Te	/:	
	7.0	2.76
Bunch separation/ns	S:	
	25	100
Design Luminosity/c	:m⁻²s⁻¹:	
	10 ³⁴	10 ²⁷
Number of bunches		
	2808	592
No. of particles/bund	ch:	
	1.15·10 ¹¹	$7.0 \cdot 10^7$

Geneva Airport CERN Meyrin Site

The Tunnel View

Klaus Rabbertz

Florence, Italy, 15.09.2009

Galilei Galileo Institute

LHC Start-Up

 Stop LHC with beam ~19th December 2009, restart ~ 4th January 2010

Klaus Rabbertz

Florence, Italy, 15.09.2009

- 1 month ions

The CMS Detector

General purpose pp collider experiment: Searches for Higgs bosons, other new particles (SUSY,..) and new phenomena; Precision measurement of SM parameters like top and W masses, ...; Heavy ion program.

Plus TOTEM:

Total cross section, elastic pp scattering, diffractive dissociation.

For details see e.g.: "The CMS Experiment at the CERN LHC", JINST 2008, 0803, S08004.

The Cavern View

7

Momentum resolution (μ , 100 GeV): 1 – 2% (up to $|\eta| \approx 1.6$) **Reconstruction efficiency:** μ: ≈99%, π: ≈90% (up to |η| ≈ 1.6)

Klaus Rabbertz

Hadronic Calorimeter

- Forward (HF): $2.9 < |\eta| < 5.0$ (not shown) $\rightarrow 2 \times 864$ towers (Brass,quartz fibers, $\approx 10 \lambda_{N}$) $\rightarrow \Delta \eta \times \Delta \phi \approx 0.111 \times 0.175 \rightarrow 0.302 \times 0.350$

<u>CASTOR calorimeter</u> (not shown): - 5.1 < $|\eta|$ < 6.5, \approx 22 X₀, \approx 10 λ_{N}

QCD Jets at the LHC Start-up

Still enough events/sec left

- Startup with QCD:
 - Not much statistically limited
 - First measurements at multi TeV σ_j
 energy scale
 - Re-establishment of Standard Model, i.e. test extrapolations from Tevatron energies
 - Background to be understood for almost everything
 - Physics commissioning of CMS
 - Be prepared for surprises ...

Galilei Galileo Institute

Jet Algorithms 1/3

Jet Algorithms 2/3

- Jet Algorithm Desiderata (Theory):
 - Infrared safety
 - Collinear safety
 - Longitudinal boost invariance (recombination scheme!)
 - Boundary stability
 (-> 4-vector addition, rapidity y)
 - Order independence (parton, particle, detector)
 - Ease of implementation (standardized public code?)

"Snowmass Accord", FNAL-C-90-249-E Tevatron Run II Jet Physics, hep-ex/0005012

IR unsafe: Sensitive to the addition of soft particles

<u>Coll. unsafe:</u> Sensitive to the splitting of a 4-vector (seeds!)

Jet Algorithms 3/3

- Jet Algorithm Desiderata (Experiment):
 - Computational efficiency and predictability (use in trigger?, reconstruction times?)
 - Maximal reconstruction efficiency
 - Minimal resolution smearing and angular biasing

- Ease of calibration
- Detector independence
- Fully specified (details?, code?)

Klaus Rabbertz

 Ease of implementation (standardized public code?) $d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}$ $d_{iB} = k_{ti}^{2p},$ $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$ p = 1: kT p = 0: Cambridge/Aachen

Jet Algorithms in CMS

Jet Angular Resolutions

CMS detector simulation, calorimeter towers, E_{CMS} = 14 TeV Resolution in jet rapidity Resolution in jet azimuth

Jet Energy Resolution

CMS detector simulation, calorimeter towers, $E_{CMS} = 10 \text{ TeV}$

Jet Energy Calibration

- Offset: Correct for detector noise and pile-up (use random triggers = zero bias, special read-out for noise)
- Relative (η): Equalize jet response in η w.r.t. control region (barrel) (dijet balancing; or MC)
- Absolute (p_T): Correct measured jet p_T to particle jet p_T
 (photon + 1jet, Z + 1jet events)
- Optional analysis dependent corrections: Electromagnetic fraction, flavour, ... will not discuss here
- Initial assumption on JEC uncertainty: 10%

CMS PAS JME-07-002

Klaus Rabbertz

Absolute Correction

CMS detector simulation, calorimeter towers, $E_{CMS} = 10 \text{ TeV}$

Jet Analysis Uncertainties

- Theoretical Uncertainties (~ in order of importance):
 - PDF Uncertainty
 - pQCD (Scale) Uncertainty
 - Non-perturbative Corrections
 - PDF Parameterization
 - Electroweak Corrections
 - Knowledge of α_s(M_z)
 - •••

- Experimental Uncertainties (~ in order of importance):
 - Jet Energy Scale (JES)
 - Noise Treatment
 - Pile-Up Treatment
 - Luminosity
 - Jet Energy Resolution (JER)
 - Trigger Efficiencies
 - Resolution in Rapidity
 - Resolution in Azimuth
 - Non-Collision Background
 - . . .

- Important especially at start-up:
 - Underlying Event
- Examples for jet analyses at high transverse momenta:
 - Inclusive jet cross section & contact interaction
 - Most complicated, requires all uncertainties to be under control!
 - Dijet mass and resonances
 - Dijet mass cross section ratios in rapidity
 - Reduced sensitivity to JES, not dependent on luminosity
 - Dijet azimuthal decorrelation
 - Less sensitive to JES, not dependent on luminosity
 - Jet shapes
 - Resonance search with boosted ttbar

The Underlying Event

The Underlying Event

Charged particle density in transverse plane vs. leading charged jet p_T

Inclusive Jets at the Tevatron

CDF 1996

CDF 2006

Uncertainties at Start-up

k_T, D=0.6, 10 TeV

Inclusive Jets at the LHC

E₆ diquarks (D) (Superstrings & GUT)

Excited quarks (q*) (Compositeness)

Need RS Gravitons (G) (Extra Dimensions) E_{CMS} > M

CMS

q, **q**, **g**

Contact Interaction

Х

s - channel

29

q, q, g

q, **q**, **g**

New Physics from Dijets

CMS detector simulation, calorimeter towers, E_{CMS} = 14 TeV

Search for possible signals of q*, visible for M < 2 TeV (Statistical uncertainty only!)

Dijets in pp collisions:

 $\Delta \phi$ dijet = $\pi \rightarrow$ Exactly two jets, no further radiation

 $\Delta \phi$ dijet small deviations from $\pi \rightarrow$ Additional soft radiation outside the jets

 $\Delta \phi$ dijet as small as $2\pi/3 \rightarrow$ One additional high-pT jet

 $\Delta \phi$ dijet small – no limit \rightarrow Multiple additional hard jets in the event

Klaus Rabbertz

hep-ex/0409040

PRL 94, 221801 (2005)

Dijet Azimuthal Decorrelation

Dijets in pp collisions:

Angular measurement \rightarrow Reduced sensitivity to jet energy scale

Normalized \rightarrow No dependence on luminosity uncertainty

Also look into:

Evaluation in progress

$$\chi = \exp(|\eta_1 - \eta_2|) = \frac{1 + |\cos(\hat{\theta})|}{1 - |\cos(\hat{\theta})|}$$

Allows to look for deviations from QCD like scattering due to new physics (extra dimensions, ...)

Galilei Galileo Institute

Jet Substructure I

Up to now: Try to differentiate between the jet originators, e.g. quarks and gluons

Jet Substructure in CMS

CDF like: Integrated jet shape

Calorimeter jets, $\sqrt{s} = 14 \text{ TeV}$

New: 2nd radial moment of jet profile

 $\sum \Delta R^2(i, jet) \cdot p_T^i$

Galilei Galileo Institute

34

Jet Substructure II

New at LHC: Try to differentiate between "number" of hard jet originators

- Hadronic decay products of heavy particles at high momenta (boosted Z': 2-prong, tops: 3-prong) end up in the same jet!
- Look into k_T subjets, already proposed in M. Seymour, Z.Phys.C62, 1994
- Recently a lot of interest in jets of boosted heavy particles, see
 Butterworth et al., PRD65, 2002; Fitzpatrick et al., JHEP07, 2007; B. Holdom, JHEP03, 2007; ...
- Could open up hadronic decay modes for discoveries ...
- Newer theoretical paper on this: Almeida et al., PRD79, 2009
- Quick estimate of experimental feasibility:
 - Smallest jet sizes considered: R = 0.4
 - → => Jet area $\approx \pi R^2 \approx 0.50 => #towers \approx 0.50 / (0.1x0.1) = 50$
- ATLAS colleagues bit more active, catching up =>

Boosted Tops 1

- Example analysis looking for top jets with p_{τ} of >≈ 600 GeV in signal sample Z' \rightarrow ttbar \rightarrow hadr. with $M_{z'}$ = 2 TeV vs. QCD jets at similar p_{τ}
- Use Cambridge/Aachen algorithm to resolve subjets, R = 0.8
- Gain stat. from ≈ 68%
 of hadr. W decays
- Efficiency for top jets:
 46%
- Reject non-top jets:98%
- Example has 800 GeV

Kaplan et al., PRL101, 2008 CMS PAS JME-09-001

Klaus Rabbertz

Boosted Tops 2

CMS detector simulation, calorimeter towers, $E_{CMS} = 10 \text{ TeV}$

Distance of highest pT subjet to jet axis:Comparison of jet masses for Z' and QCD:Smallest for Cambridge/AachenFor Cambridge/Aachen(Jet pT similar, jet masses larger for kT)For Cambridge/Aachen

Boosted Tops 3

Fraction

0.06

0.05

0.04

0.03

Minimum 2-Subjet Mass (k_)

kΤ

1.6 📮

0.8

CMS Preliminary

op. Z' M = 2000 GeV/c

Generic QCD, p_ = 600-800 GeV/c

- Undo C/A clustering sequence twice requiring pT of each subjet > 0.05 pT of "top"-jet
- Take minimal mass combination of leading 3 subjets => feature at $\approx M_{w}$

- At the LHC we will go beyond Tevatron limits and explore unknown territory in QCD and new physics
- LHC is also a superb laboratory for all kind of jet physics
- Some tough experimental systematics to deal with, but combining detector parts will help in the long run (jets+tracks, ...)
- Since the jet energy corrections are difficult to develop, experimentalists prefer to use only a small choice of them
- However, which jet algorithm is optimal for what purpose? I think we have still some things to learn ...
- New measurements are just ahead!

Thanks to the organizers for inviting me to this workshop in Florence as experimentalist of the week.

Klaus Rabbertz

Jet Areas vs. Jet pT

Klaus Rabbertz

> One Billion Cosmic Myons

Klaus Rabbertz

Florence, Italy, 15.09.2009

Galilei Galileo Institute

43

Splash Events

Shots of proton beam (clockwise, 2.10⁹) onto a collimator 150m upstream of CMS

Klaus Rabbertz

The Underlying Event

Mix of contributing MinBias and calorimetric jet triggers

Decomposition of trigger contributions to charged particle density in $\Delta \Phi$ plane

The Underlying Event

Increase sensitivity with tracks from $p_{\tau} > 0.5$ GeV instead of > 0.9 GeV

Decrease systematic effects with ratio, but with similar systematic \rightarrow 0.9 / 1.5

arXiv:0802.2400 [hep-ex]

47

K_T D=0.7

Systematic uncertainties

NLO: JETRAD CTEQ6.1M

corrected to hadron level

 $\mu_{\rm P} = \mu_{\rm F} = \max p_{\rm T}^{\rm JET} / 2 = \mu_{\rm o}$

²hys.Rev.D75:092006,2007

Tevatron Limits

Tevatron limit on contact interaction scale (qqqq): > 2.4 - 2.7 TeV

Dijet resonance search Excluded (GeV) Excluded (GeV) Resonance Resonance A or C 260 - 1250 D 290 - 630 260 - 1110 w. 280 - 840 Рта CDF Preliminary 03/2008 Ζ. q* 260 - 870 320 - 740

Exclusion limits for W' and Z'

Klaus Rabbertz

Sensitivity to new physics from dijet x section ratios in pseudo-rapidity
 Reduced sensitivity to jet energy scale

CMS PAS SBM-07-001

Klaus Rabbertz

Event Shapes

Event Shapes

Forward Jets and PDFs

Possible constraint on PDFs, but

Klaus Rabbertz

Galilei Galileo Institute

Multiple Parton Interactions

CCMS

Compared different tuned MC:

Take correction as average and half the

Pythia Tune D6T

Herwig++

To compare with data correct NLO for:

- Multiple Parton Interactions (MPI)
- Hadronization & Decays (Lund, Cluster)

Unsmearing Steps

Motivation

The **observed** cross section is **higher** than the true one due to the falling shape of the spectrum and the finite p_{T} resolution. More events migrate into a bin of measured p_{T} than out of it.

Unsmearing steps:

Analytical expression of the $\boldsymbol{p}_{\scriptscriptstyle T}$ resolution

Ansatz function with free parameters to be determined by the data

Fitting the data with the Ansatz function smeared with p_{T} resolution.

Unsmearing correction calculated bin by bin.

Klaus Rabbertz

Cross Section Ratios

Cross section ratios in 6 bins in rapidity y

Partonic Subprocesses

✤ For hh → jets there are seven relevant partonic subprocesses:

1)	gg	\Rightarrow	\mathbf{jets}	$\propto H_1(x_1,x_2)$	
2)	qg, ar qg	\Rightarrow	jets	$\propto H_2(x_1,x_2)$	
3)	$gq,gar{q}$	\Rightarrow	jets	$\propto H_3(x_1,x_2)$	
4)	$q_i q_j, ar q_i ar q_j$	\Rightarrow	jets	$\propto H_4(x_1,x_2)$	
5)	$q_i q_i, ar{q_i} ar{q_i}$	\Rightarrow	jets	$\propto H_5(x_1,x_2)$	
6)	$q_i ar q_i, ar q_i q_i$	\Rightarrow	jets	$\propto H_6(x_1,x_2)$	
7)	$q_i ar q_j, ar q_i q_j$	\Rightarrow	jets	$\propto H_7(x_1,x_2)$	
Seven linear combinations H _i of PDFs					

CMS

Decomposition of the total ppbar, pp \rightarrow jets cross section (NLO) into subprocesses At central rapiditySubprozesse against the scaling variable $x_{T} = 2p_{T}/\sqrt{s}$

Generic Jet Analysis

Requires:

- PDFs
- LO & NLO MC
- Det. simulation
- Jet energy scale and resolution
- Calorimeter calibration
- Jet triggers
- Luminosity
- and ...

Data, of course!

Klaus Rabbertz

Jet Algorithms

- Jet Algorithm Desiderata (Theory):
 - Infrared safety
 - Collinear safety
 - Longitudinal boost invariance
 - Boundary stability
 - Order independence
 - Ease of implementation

<u>Coll. unsafe</u>: Sensitive to the E_{T} ordering of 4-vectors

Tevatron Run II Jet Physics, hep-ex/0005012