

Jets and Missing Transverse Energy Reconstruction With CMS

Didar Dobur University of Florida, Gainesville

1st IPM Meeting on LHC Physics 20-24 April, Isfahan, Iran

- A brief definition of Jets
- Jet Algorithms used in CMS
- Jet Algorithm performances; Timing, Efficiency
- Jet Energy corrections; MC based & Data-driven
- Track-based Jets
- Missing ET reconstruction & its calibrations
- Summary

collider physics, many physics topologies involve jets - Our knowledge on QCD is based on Jet measurements: gluon was discovered in 3-jet event(PETRA), determination of $\alpha_s \dots$ - Most of the searches for physics beyond the SM relies on Jet measurements:SUSY, high pT di-jets - SM processes, top, W/Z+jets

Footprints of partons that cannot be

observed directly:color confinement is hadrons

Jet Production cross section is HUGE at the LHC ! σ (Jet pT> 100 GeV) ~ 10³ nb (~ 1000 events/s)

• What are Jets:

detector signals

what is a Jet and why interesting ?

Introduction

With MC simulate every step after the collision and study jets at each level

Several Jet clustering a Richer Oakster desired properties are:

- +Measurable & Calculable & Accurate :
 - +Good correspondence between parton-, particle-, detector-level
 - Insensitivity to detector details,
 PileUp, underlying event
 - Reliable calibration
 - Fast execution
 - Infrared and collinear safe
 - Fast Execution

Infrared Unsafe

sensitive to the addition of soft particles

Collinear Unsafe

sensitive to splitting a 4-Vector into two smaller

* IterativeCone Algorithm

- Input: CaloTowers, particles with $E_T > 1$ GeV - Iterative search for stable cones of radius R

 $\mathrm{R}{=}\sqrt{\Delta\eta^2+\Delta\phi^2}$

- particles assigned to a stable cone are removed from the input list and iterate...
- No split&Merge conflict
- Not infrared & collinear safe

* MidPoint Cone Algorithm

- similar to IterativeCone Algorithm
- Infrared safety introduced considering "mid-points" of proto-Jets closer than 2R.
 IR safe only up to NLO.
- Split&Merge necessary
- may leave unclustered energy
- Not any more part of standard reconstruction in CMS

* (Fast-) k_T Algorithm

Faster implementation of standard k_T
 combines 4-vectors according to their relative transverse momentum

$$d_{i,j} = min\{k_T^i, k_T^j\} \sqrt{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}$$

$$d_{\cdot} = k^i$$

$$\mathbf{d}_i = k_T^{\iota}$$

Lunn, nor

- Infrared & Collinear Safe
- No unclustered energy

- "Seedless Infrared Safe Cone" algorithm
- searches for ALL stable cones
- applies Split&Merge procedure
- Infrared and Collinear safe
- No dark energy

If d_{min}=d_{ij} merge if d_{min}=d_i object i is excluded from the next iteration

Recombination scheme : "E-Scheme" for all jet algorithms

IPM09 - Isfahan- 21 April 2009

5/28

Jet Algorithms: Timing

* Jet reconstruction takes ~0.5% of CPU time necessary for full event reconstruction, Jet algo choice does not have significant impact

- * IterativeCone algorithm is simple and fast: will be used at HLT
- * Execution time for k_T algorithm, as implemented in the FastJet package is improved dramatically w.r.t. earlier implementations

UF FLORIDA

Jetmanshingfielleigncy

Matching efficiency: fraction of GenJets which matches to a Calorimeter jet with a distance $\Delta R(GenJet,CaloJet) < 0.5$

~100% efficiency for pT>30 GeV
 KT and SiSCone algo yields better efficiencies
 Data driven methods to measure the efficiency under development

Jet energy corrections

CMS develops a factorized multi-level jet correction

Offset:for Pile Up and electronic noise in the detector (measure in zero-bias data) Relative(eta): variations in jet response with eta relative to a control region Absolute (p_T): correcting the p_T of a measured jet to particle level jet p_T

EMF: variations in jet response with electromagnetic energy fraction Flavor: variations in jet response to different jet flavor (light quark, c,b, gluon) Underlying Event Parton: correcting measured jet p_T to the parton level

derive from MC simulation tuned on test-beam data at start-up, data driven when available, on the long term from simulation tuned on collision data

IPM09 - Isfahan- 21 April 2009

Jet energy corrections: relative(η) UF FLORIDA

*****goal: Flatten the jet response versus η

<u>Data driven</u>

- di-jet balance in QCD events ΔΦ(jet1,jet2)>2.5
- any 3rd jet p_T < 0.25p_T^{dijet}

MC based:

- QCD di-jet events
- study $\Delta p_T(\eta) = p_T^{CaloJet} p_T^{GenJet}$
- most probable val of $\Delta p_T(\eta)$ is compared to most probable val of $\Delta p_T(\eta)|_{|\eta|<1.3}$ (reference point is the response at $|\eta|<1.3$)

Response= pT^{CaloJet}/pT^{GenJet}

Relative Response= $r(\eta)/r(|\eta| < 1.3)$

Response values from MC & dijet balance tech. are in agreement within 1% (|n|<1.3), 2-3%(1.3<|n|<3), 5-10% (3<|n|<5)

IPM09 - Isfahan- 21 April 2009

9/28

Jet energy corrections: absolute pt UFFICE

<u>MC based</u>

⇒ Flatten the absolute jet response of calorimeter vs. p_T

Corrects energy of jet back to the particle level in control region ($|\eta| < 1.3$) \Rightarrow Use Calorimeter jets within $|\eta| < 1.3$ which are matched to GenJet $\Delta R < 0.25$

$$\Delta p_T = p_T^{CaloJet} - p_T^{GenJet}$$

Absolute Jet Response vs. p_T(GenJet)

IPM09 - Isfahan- 21 April 2009

10/28

Jet energy corrections: absolute pt UFFLORIDA

Data driven γ +jet: P_T balance in events with the jet in the control region

- \rightarrow consider clean events with $\Delta \Phi$ (jets)> π -0.2
- \rightarrow NO extra jet with $P_T > 0.1P_T(\gamma)$
- isolated (ECAL,Tracker,HCAL) photons to reduce QCD bgr.

Didar Dobur, University of Florida

IPM09 - Isfahan- 21 April 2009

Jet energy corrections: absolute pt UFFLORIDA

Data driven $(Z \rightarrow \mu \mu) + jet$: P_T balance in events with the jet in the control region

- muons reconstructed in the tracker (independent from calorimeter)
- clean events with well separated Jet-Z
- \Rightarrow p_T(µ)>15 GeV, opposite charge , m_{µµ} within m(Z)±20 GeV
- \rightarrow NO extra jet with $P_T > 0.2P_T(Z)$.
- negligible background

12/28

Jet 7

measure jet correction up to 400

correction factors from MC dijet Z+jet consistent within 5%

combine jet calibration constants

Didar Dobur, University of Florida

consistent results with γ +jet

IPM09 - Isfahan- 21 April 2009

Genjer p_r (Gev)

Jet energy corrections: (optional)

- * EMF dependent corrections correct for variations in jet response versus
- EM energy fraction of Jets

* Flavor dependent corrections

- Gluon, c and b quark jets all have lower response than light quark jets

Flavor Variation of Jet Response 1.15 **Relative Jet Response** Fraction of Jets **CMS Preliminary** ° all |η| **< 1.3** gluon **Jet Resolution** 1.1 uds uds 0.25 -C -40 CMS Preliminary 1.05 -b 10⁻¹ -60 0.2 30<p_<100 GeV -80 0.15 100<p_<500 GeV 0.95 -100 500<p_<1500 GeV 10⁻² 0.1 10³ 10² 10² GenJet p_{τ} (GeV) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Jet EM Energy Fraction (EMF)

- correcting jet pT to the parton level
- gluons radiate more \rightarrow lower response due to out-of-cone effect
- process dependent

Flavor Fraction for QCD Dijets

UF FLORIDA

IPM09 - Isfahan- 21 April 2009

13/28

4000

2000

00

CALO

Mean: 110.9

RMS: 18.7

Gen:at GenJet Level CALO: uncalibrated CaloJets CORR: MC based jet calibrations applied L5:calibrations+flavor dependent corrections

UF FLORIDA

✓ jet

iet

b-jet

50

L5(CORR+FLV)

CORR

Mean: 92

RMS: 12.6

m_w [GeV]

150

Mean: 85.4

RMS: 12.1

100

4000

2000

00

CALO

Mean: 53.4

RMS: 10.2

14/28

100

L5(CORR+FL¥)

Mean: 177.7

CORR

Mean: 187

300

RMS : 22

m_{top} [GeV]

RMS: 21.6

200

Jet energy resolution : Data-Driven

 $\frac{\sigma(p_T)}{p_T} = \sqrt{2}\sigma_A$

Asymmetry method

• select the back-to-back ($\Delta \Phi > 2.7$) jets in the barrel region

relate resolution to Asymmetry variable A

 $A = \frac{p_T^{Jet1} - p_T^{Jet2}}{p_T^{Jet1} + p_T^{Jet2}}$

 Good agreement between datadriven and MC-driven resolutions

IPM09 - Isfahan- 21 April 2009

15/28

- Study Mass resolution in $Z' \rightarrow q\bar{q} \rightarrow both position&energy resolution participates$
- MC Samples miss-calibrated according to expectations of 100/pb data, m(Z')= 700, 2000, 5000 GeV
- = two leading jets in the barrel region of HCAL η <1.3

Resonance Mass (GeV)

CMS

Jet Reconstruction with Tracks (1) UFFICIENT

- CMS can profit from excellent tracker measurements also for measuring Jets
- Reconstruct jets using charged tracks only, independent from calorimeter
 - independent systematics
 - can be used to cross check Calorimeter Jets
 - data driven efficiencies, tag&prob
- charged fraction of hadronic jets is about 60% (large fluctuations:bad Jet energy resolution)

- good jet matching efficiencies: better angular resolution (Φ)
- stable jet energy response up to ~1 TeV

IPM09 - Isfahan- 21 April 2009

17/28

 Performance in Z+jets + PlieUP(average 5 interaction per bunch crossing)

Tracks are measured at the IP origin : tracks coming from other vertices can be rejected a prior to jet clustering
Tracks compatible with muon vertex are selected

Fraction of reconstructed Jets which are not matched to a GenJet $\Delta R{<}0.3$

TrackJets are transparent to PU effects

IPM09 - Isfahan- 21 April 2009

IPM09 - Isfahan- 21 April 2009

19/28

- * Imbalanced transverse energy in the event
- * signature of only weakly or non-interacting particles
- * Crucial object for many measurements

Medium/low MET (~20-100 GeV)
 SM measurements (top, W, Higgs, τ, ...)
 Large MET (>200 GeV)
 SUSY(gluino searches: jets+MET, ...)
 Extra Dimension searches(monojets)

MET is calculated from uncorrected energy deposits in projective Calorimeter Towers

$$\vec{E_T} = -\sum_n (E_n \sin \theta_n \cos \phi_n \hat{\mathbf{i}} + E_n \sin \theta_n \sin \phi_n \hat{\mathbf{j}}) = E_x \hat{\mathbf{i}} + E_y \hat{\mathbf{j}}$$

Resolution $\sigma(E_T) = A \oplus B\sqrt{(\sum E_T)} \oplus C(\sum E_T) \oplus D$

* Noise(A): electronic, underlying event, Pile Up

* Stochastic(B): sampling effects, e/π

* Constant(C): non-linearities, cracks,hot/dead channels

* Offset(D): effects of Pile Up, underlying event on $\sum E_T$, anti-correlated with noise term

Missing E_T Calibrations

* MET is calculated from un-calibrated CaloTowers, needs to be corrected for non-linearities in response versus P_T and η

* standard jet calibrations for jets can be used to correct MET

* CMS has a non-compensating calorimeter system, e/h≠1

Use calibrated jets with EMF < threshold, i.e 90%, & PT^{iet}(Uncor) > 10 GeV

$$\vec{E}_T^{\text{corr}} = \vec{E}_T - \sum_{i=1}^{N_{\text{jets}}} \left[\vec{p}_{T_i}^{\text{corr}} - \vec{p}_{T_i}^{\text{raw}} \right]$$

Bias and relative resolution on $MET_{||}$ for $(W \rightarrow e_v)$ +jets

IPM09 - Isfahan- 21 April 2009

22/28

Muon corrections on missing ET

Muon leaves a small fraction of its energy in calorimeter

Muons are identified in the Tracker and muon system, well separated in η-φ with jets & P_T^µ>10 GeV are used

UF FLORIDA

further study for selection criteria for high pT muons underway

MET component parallel to Z for different correction levels

Tau corrections on missing ET

* Tau jets are different from ordinary QCD jets, typically less constituents with fairly high energy applying standard jet corrections to hadronic tau jets will result in significant overcorrection on ME_T

* Tau-specific corrections have been derived using Particle-flow algorithm and propagated into ME_T corrections

Correction on MET

UF FLORIDA

MET in W→ev events

W→e[±]v

- Single Isolated electron HLT
- A high E_T electron (E_T >30 GeV) within $|\eta| < 2.5$
- Isolated: no tracks with P_T >1.5 GeV in a cone of ΔR <0.6 around the electron.
- Electron Id: H/E, Δη, Δ ϕ , $\sigma_{\eta\eta}$
- Reject events with a 2^{nd} electron having $E_T > 20$ GeV.

✓ MET shows clear separation of signal from Background

- ✓ QCD is the major background and methods to estimate it from data are developed, while EWK background estimation is based on MC
- ✓ Assuming cross sections at 14 TeV and 10pb⁻¹ of ∫Ldt we expect:
 ~ 28K W→ev events and ~ 6K QCD events

Jets & MET in SUSY events

Signature:

• Cascade decay of primarily produced SUSY particles

R-Parity conserving models ---> LSP ---> MET

 \bullet Many jets, jet-pair mass comparable with W or Z

- lepton veto
- MET > 200 GeV
- P_T of 1_{st} jet > 180 GeV

UF FLORIDA

- 2_{nd} jet > 110 GeV
- 3_{rd} jet > 30 GeV
- HT > 500 GeV

• Further MET clean-up and QCD rejection cuts are applied

IPM09 - Isfahan- 21 April 2009

25/28

- Most of the results that I presented are being updated
- CMS explores excellent tracker measurement also for jets and MET
 - Only Calorimeter/Track-only based Jets/MET is presented
 - Many new results with a lot of improvement in resolutions coming soon
 - Jets and MET using ParticleFlow objects
 - Corrections on Jets (JetPlusTrack) and MET (tcMET) using tracks

Summary

CMS exercises several jet algorithms and their parameters, recent developments on algorithmic side, timing, IRC safety...
 A lot of effort on Jet calibrations

 A multi-level factorized correction
 MC based as well as data driven techniques

 Jets reconstructed using using different/combined detectors are well under study: Tracks-only; Particle-Flow Objects; Jets corrected precisely measured tracks

Missing E_T is a complicated object but it is important
 Calibrations to improve resolutions are promising
 biggest problems with MET will be known when beams collide (beam effects, dead/hot channels are important)

First collision data will be crucial to understand both objects and their calibrations