

Status of the Forward Physics Projects in ATLAS

XV International Workshop on Deep-Inelastic Scattering and Related Subjects

Forward Detectors in ATLAS

For the upgrade plans of the ATLAS Roman Pot program with stations at 220m and 420m, see talks by C. Royon and A. Pilkington.

ATLAS Roman Pot Detectors A Scintillating Fiber Tracker (ALFA)

ATLAS Roman Pot Detectors A Scintillating Fiber Tracker (ALFA)

ATLAS Roman Pot Detectors A Scintillating Fiber Tracker (ALFA)

ALFA Measurement Goals

B = Nuclear el. scattering slope parameter ρ = Ratio of Re. and Im. part of nuclear amp.

Luminosity Error	Value
Stat.error	± 1.77%
Divergence + 10%	± 0.31%
Alignemnt ±10µm	± 1.3%
Acceptance ±10µm (edge)	± 0.52%
β±2%	± 0.69%
Ψ±0.2%	± 1.0%
Detector resolution	± 0.29%
Total exp.syst. error	± 1.9%
Total error	± 2.60%

$$\frac{\Delta\sigma_{tot}}{\sigma_{tot}} = O(1\%)$$
$$\frac{\Delta B}{B} = O(0.5\%)$$
$$\frac{\Delta\rho}{\rho} = O(4\%)$$
(Stat. Only)

Inelastic pp Scattering

- 1. Monitor the ATLAS Luminosity
 - Integrated (Relative) luminosity
 - Luminosity (Beam) Monitoring
- 2. Diffractive Physics (Rapidity Gap Veto)

$$\frac{\text{Zero Counting:}}{\mu_{LUCID}} = -\ln\left(\frac{N_{ZeroBC}}{N_{TotBC}}\right)$$

$$\frac{\text{Hit Counting:}}{\text{(Particle counting, but limited by detector granularity)}} \mu_{LUCID} = \frac{\langle N_{Hits / BC} \rangle}{\langle N_{Hits / pp} \rangle}$$

$$\frac{Particle Counting:}{\langle N_{Particles / BC} \rangle} \mu_{LUCID} = \frac{\langle N_{Particles / BC} \rangle}{\langle N_{Particles / pp} \rangle}$$

- Acceptance for min. bias events
- Time resolution to measure individual BCs
- Capable of counting particles

- Polished Aluminum tubes (Ø=1.5cm), filled with C4F10, surrounding the beam pipe and pointing at the IP (Z~17 m)
- Fits in available space and has low mass (< 25 kg/end)
- Cherenkov light reflected down the tube and read out by PMTs
- Pointing of the Al-tubes reduce signal from particles entering at large angles
- PMT signal Amplitude used to distinguish multi particles per tube
- Fast response from PMT allows to measure individual BCs

The ATLAS Luminosity Monitor (LUCID)

Run LUCID in parallel with absolute measurement

- Initially, LHC Machine Parameters (Precision: ~10-15%)
- Medium term
 Physics processes, W/Z & μμ/ee (Precision: ~5-10%)
- During 2009 Roman Pot (ALFA) measurement (Precision: ~2-3%)
- Calibrate to independent measurements, e.g. TOTEM...

The ATLAS Zero Degree Calorimeter (ZDC)

Neutral particles at 0° polar angle

Heavy Ion physics program

Impact parameter (Event Centrality), Luminosity, Trigger input

pp physics program

Forward cross sections

Accelerator tuning

Van der Meer scan, IP position, beam crossing angle

The ATLAS Zero Degree Calorimeter (ZDC)

The ATLAS Zero Degree Calorimeter (ZDC)

pp physics program

- ALFA
 - Absolute Luminosity from Elastic Scattering
 - Proton Tagging in Diffractive Events
 - Installation 2008-2009
- LUCID
 - Luminosity Monitor
 - Forward Inelastic Scattering
 - Installation Fall 2007 (Upgrade ~ 2009)
- ZDC
 - HI Event Characterization and Luminosity
 - HI/pp Forward Physics
 - Accelerator Tuning
 - Installation Fall 2007 (Upgrade ~ 2009)