Early SM physics and early discovery strategy in ATLAS

Jörn Grosse-Knetter, University of Bonn for the ATLAS Collaboration

- Physics potential of the first few fb⁻¹:
 - underlying event
 - PDFs, Z,W production
 - top measurements
 - early SUSY discovery
 - Higgs, Z' searches

ATLAS Detector Layout

Inner Detector (ID) tracker:

- Si pixel and strip + transition rad. tracker
- σ(d₀) = 15μm@20GeV
- $\sigma/p_T \approx 0.05\% p_T \oplus 1\%$

Calorimeter

- Liquid Ar EM Cal, Tile Had.Cal
- EM: $\sigma_E / E = 10\% / \sqrt{E} \oplus 0.7\%$
- Had: $\sigma_E / E = 50\% / \sqrt{E} \oplus 3\%$

Muon spectrometer

- Drift tubes, cathode strips: precision tracking +
- RPC, TGC: triggering
- σ/p_T≈ 2-7%

Magnets

- Solenoid (ID) \rightarrow 2T
- Air toroids (muon) \rightarrow up to 4T

Full coverage for $|\eta|$ <2.5, calorimeter up to $|\eta|$ <5

HCP 2007 Elba

1

Initial Data Taking

- Full pp-collisions at √s=14 TeV from summer 2008 on
- Anticipated luminosity per experiment:
 - 2008 \mathcal{L} < 10³³ cm⁻²s⁻¹, integrated by end of year: up to 1 fb⁻¹
 - 2009 \mathcal{L} = 1...2·10³³ cm⁻²s⁻¹, integrated by end of year: up to 10 fb⁻¹

Jörn Grosse-Knetter

 Will focus on physics which is accessible with a few fb⁻¹ or less in this talk

Cross Section and Events Rate

Process	σ(nb)	L=10pb ⁻¹	L=10fb ⁻¹
Minimum bias	10 ⁸	~10 ¹²	~10 ¹⁵
Inclusive jets – p _⊤ >200GeV	100	~10 ⁶	~10 ⁹
$\label{eq:constraint} \begin{split} W &\to ev \\ Z &\to e^+e^- \\ \bar{t}\bar{t} \end{split}$	15 1.5 0.85	~10⁵ ~10⁴ ~10³	~10 ⁸ ~10 ⁷ ~10 ⁶

cross-sections of "basic" hard processes ~1-2 orders of magnitude larger than at Tevatron – can be even more for searches

The First 10-100 pb⁻¹

How many events in the beginning ?

LHC is a W,Z,top factory:

- small statistical errors in precision measurements
- can search for rare processes
- large samples for studies of systematic effects

4

Underlying Event

region transverse to the leading jet: particles come from underlying event

Underlying event also uncertain at LHC :

- Depends on: multiple interactions, PDFs, gluon radiation
- Important ingredient for isolation of jets and leptons, energy flow, jet tagging ...

5

HCP 2007 Elba

Jörn Grosse-Knetter

Z and W Production

- Low luminosity runs (∠=0.5 10³⁰ 10³³ cm⁻²s⁻¹) → trigger early on large samples of SM candles :
 - $Z \rightarrow \ell \ell$
 - $W \rightarrow \ell v$
 - $\ell = e/\mu$ but also τ (hadronic $\tau + E_T^{miss}$ trigger)
- Energy and momentum scale calibration from Z→ℓℓ (ℓ = e/µ)
- E_T^{miss} calibration from $W \rightarrow \mu v$ and $Z \rightarrow \tau \tau$
- Understand W+jets and Z+jets:
 - important background for searches
- Measure the $W \rightarrow \tau v$ cross section:
 - validation of τ-ID needed for searches

Signal evidence through N_{track} spectrum after selection:

- τ trigger
- full off-line τ-ID

Jörn Grosse-Knetter

• E_T^{miss} cut

W Rapidity

 Constrain PDF using W→ℓv ATLAS early data

$$u\overline{d} \to W^+ \to e^+ v$$

$$d\overline{u} \to W^- \to e^- \overline{v}$$

- e[±] rapidity spectrum shape: sensitive to gluon shape parameter - valence quark density
- Probe low-x gluon PDF at $Q^2=M_W^2$

The selection:

- Isolated electron p_T >25 GeV, $|\eta|$ <2.4
- E_T^{miss}>25 GeV
- no jets with $E_T > 30 \text{ GeV}$
- p_T^{recoil}<20 GeV
- BKG <1% W/Z→τ, Z→e⁺e⁻, QCD

W Rapidity

1M simulated(CTEQ6.1) pseudo-data sample (~100pb⁻¹) including 4% sys. error

Central value of ZEUS–PDF prediction shifts and reduced error on low-x gluon shape parameter λ by 35%

WZ Production at Low Luminosity

	N _{eee}	Ν _{eeμ}	${\sf N}_{\mu\mu e}$	Ν _{μμμ}	N _{total} (1fb ⁻¹)
N _{signal}	16.9	17.1	21.9	19.8	75.7
N _{bkg}	1.97	0.91	2.35	2.25	7.47
S/B	8.57	18.9	9.33	8.80	10.13
S/√B	12.0	18.0	14.3	13.3	27.7

Background Contribution

Channel	Z+jet	ZZ→4I	Zγ	DY
Contribution(%)	45	40	10	5

Signal can be observed with 1fb⁻¹

 \rightarrow probe gauge coupling

Top Production and Decay at LHC

Jörn Grosse-Knetter

Top Measurements (<1 fb⁻¹)

...with b-tag

Selection:

- 1 Lepton
- missing E_{T}
- 4 (high-P_T)-jets (2 b-jets)
 - → signal efficiency few %
 → very small SM background
- 'Standard' Top physics at the LHC:
 - b-tag is important in selection;
 - most measurements limited by systematic uncertainties
- 'Early' top physics at the LHC:
 - cross-section measurement (~ 20%)
 - production & decay mechanisms (spin)

11

Top Measurements (<1 fb⁻¹)

12

...without b-tag – b-tag might not be well understood on day one

Event toplogy: 3 jets with highest $\sum p_T$

Event selection:

- 4 jets p_T> 40 GeV
- Isolated lepton : p_T > 20 GeV

Top Measurements (<1 fb⁻¹)

- Feedback on MC description and detector performance:
 - b-tagging
 - calibrate calorimeter energy jet scale (W→jj from t→bW)
- With 30pb⁻¹ data, δm_{top} ~ 3.2 GeV sys. error dominated: FSR, b-jet energy scale → those 30pb⁻¹ must be well understood (ie actually need more data)!

13

SUSY Signatures

- Strongly interacting sparticles (squarks, gluinos) dominate production
 - ~100 events per day (for squark/gluino masses of ~1TeV at 10³³ cm⁻²s⁻¹)
 - Discovery possible with only 1 fb⁻¹
- Heavier than sleptons, gauginos etc. → cascade decays to lightest SUSY particle (LSP)
- Long decay chains and large mass differences between SUSY states
 - Many high p_T objects observed (leptons, jets, b-jets)
- If R-Parity conserved LSP (lightest neutralino in mSUGRA) stable and sparticles pair produced
 - Large E_T^{miss} signature
- Largest physics background is neutrino emission (eg $Z \rightarrow vv$)

Jörn Grosse-Knetter

SUSY Mass Scale

Look at hardest jets/leptons

 $M_{eff} = \Sigma |p_T^i| + E_T^{miss}$

Distribution peaked at ~ twice SUSY mass scale for signal events.

- Previously: Monte Carlo generators with parton shower only
 - Cover high p_T region of phase space badly (fewer jets generated there)
- Need high p_T jets for SUSY analysis
 - Use newer matrix element-parton shower matching Monte Carlos

$Z \rightarrow vv$ Missing E_T Distribution

Missing ET (Alpgen v2.05)

blue distribution is obtained from Z –> $\mu\mu$ events

Muon reconstruction efficiencies and Z decay branching fractions are considered

Number of events (E_Tmiss > 300GeV) 157 ± 13 (Z -> νν) 142 ± 39 (Z -> μμ)

Estimation is successful,

but statistics is limited

Estimation from W+jets

SUSY Reach

Discovery reach as a function of integrated luminosity in mSUGRA parameter space for E_T^{miss} channel

Discovery reach for multiple signatures: cover most of parameter space with 10fb⁻¹

universitätbonn

Di-Lepton Search

- Z': new heavy neutral gauge bosons
- Expected in new physics: GUT, dynamical EWSB,...
- Current mass limit (CDF) m_{z'}>850GeV
- Di-lepton (e⁺e⁻ or μ⁺μ⁻) resonance with m_{Z'}=O(1 TeV)

→ large mass peak above low background:

- Mostly Drell-Yan (irreducible)
- ZZ, ZW, WW, tt
- Expect Z'→e⁺e⁻ to be better than Z'→µ⁺µ⁻ (better resolution of calorimeter at high energy)

Jörn Grosse-Knetter

Di-Lepton Search

- Few 100pb⁻¹ enough to discover for m₇,~1 TeV
- Di-Lepton search: Generally good channel for searching new physics with low luminosity data
 - eg Randall-Sundrum excitations

ATLAS reach for 400pb⁻¹

Light SM Higgs

ATLAS with 10fb⁻¹:

5σ significance for $m_H \ge 120 GeV$

HCP 2007 Elba

Jörn Grosse-Knetter

universitätbor

Summary

First physics at 14 TeV starting summer 2008 will allow to study on few fb⁻¹...

- Standard Model physics:
 - Underlying event, min. bias, QCD (see next talk)
 - W, Z production:
 - Use for detector, MC understanding
 - Improve knowledge of PDFs
 - Di-boson production: probe gauge coupling
 - Measure top events, use for calibration
- First searches:
 - Probe SUSY in the ~ 1 TeV scale
 - Look for di-lepton resonances
 - If lucky, discover Higgs (might need more luminosity)

