QCD Studies in ATLAS

Martin Siebel (CERN) On behalf of the ATLAS Collaboration

XIII Lomonosov Conference, Moscow, 23.-29.8.2007

LHC and ATLAS

- Synchrotron with 27km circumference
- pp collisions at $\sqrt{s} = 14 \text{TeV}$
- Low Luminosity: 2*10³³cm⁻² s⁻¹ (~20 fb⁻¹/a)
- High Luminosity: 10³⁴cm⁻² s⁻¹ (~ 100 fb⁻¹/a)

LHC-b

CMS

- General purpose detector
- 42m x 25m x 25m
- Mass: 7000t
- Precision measuerments with InDet, Calo, Muons within |η|< 2.5
- Calorimetry coverage |η|<5
- Jet Energy Resolution: 50%/√E+3% (central)

Martin Siebel

QCD studies in ATLAS

Alice

QCD at ATLAS

- LHC is a QCD Machine
 - Properties of initial partons determined by strong interactions inside the protons (PDF)
 - Highest cross-sections for QCD processes
 - Background to most processes
 - QCD corrections to all processes
 - Final state rarely colour singlet
 - → strong interactions of FS with proton remnant
- → QCD is of utmost importance at LHC

- LHC is a discovery machine
 - Unprecedented energy range and luminosity
 - SM Higgs well within coverage
 - Many alternative scenarios:
 - SuperSymmetry
 - Technicolour
 - Contact interactions
 - Leptoquarks
 - Compositeness
 - ... many more

- Exciting possibilities for new physics
- QCD (and SM) often take the back seat
- QCD (and SM) will have to be measured precisely at LHC energies_

Martin Siebel

QCD studies in ATLAS

QCD at ATLAS

- Many interesting subjects, e.g.
 - PDF measurements (proton structure)
 - Jet studies (reconstruction, rates, cross sections...)
 - Fragmentation studies
 - Diffractive physics
 - α_s measurements
- Here: Discussing state of some picked
 examples
 - Jet reconstruction
 - Jet cross section mesurements
 - Diffractive Luminosity measurement

Martin Siebel

QCD studies in ATLAS

Jet Reconstruction

- Jets in the final state dominant signature of strong interactions
- General task: Transform calorimeter response into four-vectors representing the properties of a jet/parton
- Jet energy has to be measured as precise as possible
- Reconstruction of jets, calibration of energy measurement essential to a multitude of measurements

Jet Reconstruction

I Calo Reco

- Shower containment
- Electronic noise
- Pile-up
- Particle separation and Id

<u>II Jet Reconstruction</u>

- Issues
 - Reco algorithm (k_t,cone) ?
 - Input (towers, clusters) ?
 - Jet size
 - Overlap
- Used Reco Algorithms
 - Cone (w+w/o seeds), seed cut 1-2 GeV in E_t, R = 0.4 ... 1
 - K_t w/o preclustering, R = 0.4 ... 1
- Typically cut E_t>20 GeV on final jets

- III Calibration Calo → Particles:
 - Global jet calibration
 - Reconstruct jet in calo
 - Match reco jet with true jet
 - Fit calibration function in η,E from di-jets
 - Local hadron calibration
 - Calibrate calo clusters to true particle scale
 - Form jets from calibrated clusters
 - Apply jet-based correction to particle level

IV Calibration Particles → Partons

- Out of cone corrections
 - Parton-jet matching in di-jets
 - E_t balance in γ +jet events
 - In situ corrections from W,top,... masses
- Underlying event compensation
- Flavour dependence (b,udsc,g)

QCD studies in ATLAS

- Inclusive jet cross sections one of the early (low integrated luminosity) analyses at ATLAS
- Measurement of α_s possible
- Sensitive to new phenomena
- QCD jets are background to almost all interesting physics processes
- Understanding of QCD jets crucial for discovery of new phenomena
- Here:
 - Estimation of expected precision
 - Focus on low luminosity ($L \approx 10^{33}$ cm⁻² s⁻¹)

- Jet p_t spectra for different η
- Rapid decrease for higher p_t
- High p_t region sensitive to new physics
- Considered errors:
 - statistical
 - experimental
 - theoretical

Statistical Errors

- Only jets with $|\eta| < 3$ considered
- Naïve Error Estimation $\Delta N = \sqrt{N}$
- Plotted: ∆N/N for different L
- 1% error at $p_t \approx 1 \text{TeV}$ with 1 fb⁻¹
- For 3.2 < |η| < 5 error up to 10%

Jet Energy Scale Errors

1% energy shift

5% energy shift 10% energy shi

Experimental Errors

- Several sources:
 - Luminosity measurement
 - Jet Energy Scale
 - Jet Resolution, UE, trigger efficiency
- Jet Energy Scale:
- central) / central 1% uncertainty results in 10% e on σ
 - 5% uncertainty result in 30%

on σ

- (shiftet 10% uncertainty result in 70% ε on σ
- If known to 1-2%, experimental errors not dominant

200

1800

2000

P_t[GeV]

Theoretical Errors

• Cross section is convolution of PDF and hard interaction: $\sigma =$

$$\sigma = \sum_{a,b} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) \hat{\sigma}_{a,b}(x_a, x_b, \mu_R)$$

Can be calculated in NLO

• Two main sources of theoretical errors (CDF) :

- scale uncertainties
 - Factorisation μ_F
 - Renormalisation μ_R
- PDF uncertainties
- Scale uncertainties:
 - independent variation of μ_F and μ_R within $p_t^{max}/2 < \mu < 2p_t^{max}$
 - ~ 10% uncertainty at 1TeV

Theoretical Errors

- PDF uncertainties dominant
- Uncertainty evaluation using CTEQ6, 6.1
- Largest uncertainty: high x gluons, in DIS only indirectly accessible
- Related error sets: 29, 30
- Comparison: Best fit with 2930
- k_t clustering algorithm
- At $p_t \approx 1$ TeV around 15% uncertainty

PDF Errors on Inclusive Jet Cross-Section

Constraining the PDF at LHC

- W and Z cross section predicted precisely
- Main uncertainty: At $Q^2 \approx M_Z^2$ with $x \approx 10^{-2}$ -10⁻⁴ gluon PDF relevant
- Asymmetry is gluon PDF independent \rightarrow benchmark test
- 1M W events (~200pb⁻¹) generated, CTEQ6.1, ATLFAST, 4% exp. error
- 'Measurements' detector corrected and entered into Zeus PDF fit
- Error on λ parameter ($x \cdot g(x) \sim x^{-\lambda}$) reduced by 35%

Martin Siebel

Luminosity Measurement

- Luminosity determination: Leading uncertainty for many cross section measurements
- QCD processes can be used to determine LHC luminosity
- Aim: 2-3% precision of Luminosity measurement
- Options:
 - LHC beam parameter measurements outside the experimental areas, 5-10% accuracy, improving
 - QED cross sections (lepton pair production via γγ), low event rate, theoretical uncertainties (PDF, fixed order calculation), >5% accuracy
 - Elastic scattering via QED and QCD, requires coverage at very high η-values (Roman Pots), planned for ATLAS
 - \rightarrow UA4: Absolute measurements with 3% accuracy achieved

Luminosity Measurement

- t dependence of the cross section
- Fit of measured event rate in C-N interference region yields L,σ_{tot}, ρ, b
- Requires measurements down to t ~ 6.5 10⁻⁴ GeV² (θ ~ 3.5 10⁻⁶)
- Detectors necessary which
 - Are close to the beam (1.5mm for z=240m)
 - Have a resolution well below 100 µm
 - Have no significant inactive edge

Luminosity Measurement

- Square fibres 0.5mm x 0.5mm
- 2 x 64 fibres on ceramic substrate
- U/V gemeometry with 90° tilt
- 10 double sided modules

QCD studies in ATLAS

 \rightarrow Goals achievable

QCD studies in ATLAS

Performed Tests

Spatial resolution

- scales with 1/E
- For LHC Energies ~ 20 μ m
- Insensitive edges < 30 μm

Luminosity Fit

- 10M events FullSim
- Fit of t dependence
- Comparison with input parameters:
 - excellent agreement
 - error on L 1.5%
 - large correlations
 between parameters

Conclusions

- QCD is a central field at LHC that requires attention
- Preparations to understand Jet Energy Scale well on the way
 - Complex task
 - All options left open to see what works best on data
- Inclusive jet cross sections require good control of experimental and theoretical errors
 - Experimental error dominated by JES
 - Theoretical error dominated by high x gluon PDF
 - Contributions to PDF from LHC data worthwhile
- Absolute LHC luminosity measurement via proton diffraction
 - Promises high precision
 - Roman pot detectors required
 - Design and testing well on the way

Spares

