Standard Model Physics in ATLAS

Monika Wielers RAL

On behalf of the ATLAS collaboration

Typical Standard Model processes σ (nb) Process **Events** (∫**£**dt = 100 pb⁻¹) 108 ~**10**¹³ Min bias ~10¹² 5·10⁵ bb **Inclusive jets** 100 ~ 10⁷ p_T > 200 GeV ~ 10⁶ $W \rightarrow ev, \mu v$ 15 1.5 ~ 10⁵ $Z \rightarrow ee, \mu\mu$ 8.0 ~ 10⁴ tt

LHC is a W, Z, top factory

- \rightarrow Small statistical errors in precision measurements
- \rightarrow can search for rare processes
- \rightarrow large samples for studies of systematic effects

- Can't cover everything, so
 - Just focus on few topics
 - Emphasis on first measurements
- Will cover
 - Underlying event
 - $Z \rightarrow \mu \mu$ cross-sections
 - Constraints on PDF's using W's
 - Gauge boson pair production
 - Jet cross section measurement
 - Top mass and cross section
- Will not cover
 - EW precision measurement e.g. $sin^2\Theta_W$, W mass and width
 - Top precision physics e.g. polarisation, single top production etc (+ talk by E. Chabert)
 - B-physics
 - Standard Model Higgs Searches
- Good understanding needed as this is the background for searches for New Physics (→ talk by H.P. Beck)

Measurement of Underlying Event

- Modelling of underlying event necessary tool for high p_T physics
 - Important ingredient for jet and lepton isolation, energy flow, jet tagging, etc
- Underlying event uncertain at LHC, depends on
 - multiple interactions, PDFs, gluon radiation
- Look at tracks in transverse region w.r.t. jet activity

W and Z production

- LHC is W/Z factory
- First physics measurements
 - Measurement of W/Z inclusive cross section as well as W/Z+jet
 - Constraining PDF's
 - Measurement of gauge boson pair production
 - Measurement of triple gauge couplings
- Useful to understand detector and performance
 - $\boldsymbol{\ast}$ In situ calibration of EM calorimeter using Z $\!\!\!\rightarrow\!\!\!ee$
 - Solution Momentum scale from $Z \rightarrow \mu \mu$, $Z \rightarrow ee$
 - * Alignment via $Z \rightarrow \mu \mu$

 - Luminosity measurement

- Background Processes
 - $b\overline{b} \to \mu\mu + X$
 - \gg W + jets $\rightarrow \mu v$ + jets
 - ◊ $t\bar{t}$ → Wb + Wb → µv + jet + µv + jet
 - $Z \to \tau \tau \to \mu \upsilon + \mu \upsilon$
 - Background Uncertainty < 0.002</p>

Selection

- * Two reconstructed opposite charged isolated muons in $|\eta|$ <2.5
- p_{T1}>15 GeV, p_{T2}>25 GeV
- ✤ |91.2 GeV-M_{µµ}|<30 GeV</p>
- Experimental systematics from
 - Efficiency extraction, momentum scale, misalignment, magnetic field knowledge, collision point uncertainty, underlying events, (pileup)
- Theoretical uncertainties arising from
 - PDF choice, initial state radiation, p_T effects (LO to NLO)
- Plus 10% uncertainty from luminosity measurement
- * Expected Precision for $\int \mathcal{L} dt = 100 \text{ pb}^{-1}$

 $\frac{\Delta\sigma}{\sigma}(pp \to Z/\gamma^* + X \to \mu\mu) = 0.004 \,(\text{stat}) \pm 0.008 \,(\text{ex.sys}) \pm 0.02 (\text{th.sys}) \pm 0.1 (\text{lumi})$

Constrain PDF using $W \rightarrow lv$

- Production
 - * Main (LO) contribution $u\overline{d} \rightarrow W^+ \quad d\overline{u} \rightarrow W^-$
 - Dominant sea-sea parton interactions at low x
 - At $Q^2=M_W^2$ dominated by $g \rightarrow q\overline{q}$
 - Low x gluon has large uncertainty
- Studying W and Z production can increase our knowledge of gluon SF
- → PDF error sensitive to W→ev rapidity distribution
 - Exp. uncertainty (dominated by systematics) sufficiently small to distinguish between different PDF sets
 - PDF uncertainties only slightly degraded after detector simulation and selection cuts

Normalisation free \rightarrow independent of luminosity

Di-boson production

- Probes non abelian SU(2)xU(1) structure of SM
- Trilinear gauge boson couplings measured directly from ZW, WW, ZZ cross section
- Compare to SM predictions for
 - Cross section
 - Solution Boson $p_T(V=W, Z, \gamma)$
 - Production angle
- These variables sensitive to modification to TGC structure from BSM effects
- Di-boson production for $\int \mathcal{L} dt = 1 \text{ fb}^{-1}$

Channel	# events	bkgs	S/√B
ZW	75.7	ZZ→4ℓ, Z+jet,	30.1
		Zγ, DY	
WW	358.7	DY, Z+jet, tt,	18.9
		ZW, Zγ, ZZ,	
		W+jet	
ZZ	13	Nearly bkg free,	0 bkg
		Zγ, tἶ, Zbb	events

- Study of high-p_T tails of cross-section sensitive to New Physics (e.g. quark compositeness)
- ***** Test of QCD (running of α_s)
- di-jet cross section and properties (E_T,η₁,η₂) constrain parton distribution function
- Good understanding of errors needed!

HEPChile, Jan 2008

M. Wielers (RAL)

Jet Reconstruction

General task: Transform calorimeter response into four-vectors representing the properties of a jet/parton

- **Experimental factors**
- Dead material in front of calo
- Non-sensitive regions
- Detector inefficiencies
- Non-compensation
- Longitudinal leakage
- Lateral shower size
- Read-out granularity
- Non-linearities
- Electronics noise
- Pile-up noise
- Magnetic field effects

- Physics related factors
 - Initial state radiation
 - Final state radiation
 - Fragmentation (flavour dependence)
 - Underlying event
- Minimum bias pile-up Effects due to jet finding algorithm
- Efficiency
- Jet size
- Treatment of nearby jets
- Jet direction calculation
- Jet corrections
- æ ...

Inclusive jet cross section

- Cross section measurement
 - Test of QCD
 - High p_T region sensitive to new physics
- Statistical Errors
 - Naïve Error Estimation $\Delta N = \sqrt{N}$
 - ▶ 1% error at p_T ≈ 1TeV with ∫⊥dt=
 1 fb⁻¹ in |η| < 3
 - * For $3.2 < |\eta| < 5$ error up to 10%
- Experimental Errors
 - Luminosity measurement
 - Jet Energy Scale
 - Jet Resolution, UE, trigger efficiency

æ ...

Jet p_T spectra for different η

Jet cross section

Jet Energy Scale:

Uncertainty	Error on σ
1%	10%
5%	30%
10%	70%

- If known to 1-2%, experimental errors not dominant
- First estimate of uncert. at start-up from pion test beam data
 - At EM scale: ~3% diff between data and MC
 - At had scale: 4-5%

Theoretical Error

- * scale uncertainties (Factorisation $\mu_{F,}$ Renormalisation μ_{R})
 - ~ 10% uncert. at 1TeV, less below
- PDF uncertainties

Top Production and Decay at LHC

HEPChile, Jan 2008

Early Top mass measurement

- Event selection:
 - no b-tag yet on day-1 (might not be well understood)
 - Isolated lepton : p_T> 20 GeV
 - missing E_T > 20 GeV
 - 4 jets p_T> 40 GeV
 - \clubsuit 3 jets with highest $\sum p_{T}$

Early Top measurements

- * Top mass with $\int \mathcal{L} dt = 30 \text{ pb}^{-1}$:
 - δm_{top} ~ 3.2 GeV
 - Sys. error dominant: FSR, b-jet energy scale → those 30 pb⁻¹ must be well understood (ie actually need more data)
- Top cross section
 - σ_{tt} measured with ~20% precision
- Excellent samples for
 - Commission b-tagging
 - $\boldsymbol{*}$ Jet energy scale calibration using W $\!\!\rightarrow\!\!jj$ from t $\!\!\rightarrow\!\!bW$

Conclusions

- As soon as collisions at 14 TeV happen, interesting SM physics available in recorded data
- First SM physics studies
 - Underlying event and min. bias production
 - W, Z (+jet) production:
 - understand detector performance (calib/alignment, eff extraction)
 - Improve knowledge of PDFs
 - Di-boson production: probe gauge coupling
 - Jet cross-section
 - Photon cross sections
 - Measure top mass and cross section
 - also useful for hadronic calibration and b-tagging
- Focus here was on first measurements, many more topics studied
 - * EW precision measurement e.g. $sin^2\Theta_W$, W mass and width
 - Top precision physics e.g. polarisation, single top production etc
 - Standard Model Higgs Searches
- Very good understanding of SM processes needed for searches for New **Physics**