

HERAFitter Meeting

The fastNLO Collaboration: Daniel Britzger, Thomas Kluge, Klaus Rabbertz, Fred Stober, Markus Wobisch (DESY, Liverpool, KIT, KIT, Louisiana Tech University)

Klaus Rabbertz

CPPM, Marseille, 14.02.2012

- Interpretation of experiment data relies on:
 - Availability of reasonably fast theory calculations
 - Often needed: Repeated computation of (almost) same cross sections
- Examples for a specific analysis:
 - Use of various PDFs (CTEQ, MSTW, NNPDF, HERAPDF, ABKM ...)
 - Determine PDF uncertainties (PDF error sets)
 - Use data set in fit of PDFs and/or $\alpha_s(M_z)$
- Sometimes NLO predictions can be computed fast
- But some are very slow, esp. for jets
- Need procedure for fast repeated computations of NLO cross sections
- Use fastNLO (in use by most PDF fitting groups)

(ATLAS mostly uses another project: APPLGrid)

Klaus Rabbertz

CPPM, Marseille, 14.02.2012

fastNLO_reader_2.1.0

First public release TODAY, 14.02.2012 See: http://projects.hepforge.org/fastnlo/

	Home	Documentation	Interactive	Code	Links
	fastNLO Homepage	February 14, 2012: Generic table reader, in version 2 available: fast	Fortran and C++ NLO_reader_2.1.	•, for new 1 0_1062	fastNLO
	The fastNLO project provides computer code and tables of pre-computed perturbative coefficients for various observables in hadron-induced processes. This allows very fast computations of these observables for arbitrary PDFs and/or values of alpha_s(Mz) as e.g. needed in PDF fits or in systematic studies.	New v2 tables, including for ATLAS Inclusive Jets, R=0.4 and R=0.6 availab New v2 table as well as Jets, Phys. Rev. Lett. 10 includes 2-loop threshol proof of concept, the CN well as data points. Logging output for comp Fortran, ATLAS R=0.4, C C++, CMS R=0.5, Fortra converted from v14, CM	y threshold corre arXiv:1112.6297 ble. converted v14 ta 7 (2011) 132001, d corrections st o 4S non-perturbat parison can be fo C++, ATLAS R=0.6 n, CMS R=0.5, C- S R=0.5, C++, co	ctions at d , with anti ble for CM , available; default sca ive correct und here: A 5, Fortran, ++, CMS R onverted fr	efault scale, i-kT jet sizes S Inclusive v2 table also le and, as tion factors as ATLAS R=0.4, ATLAS R=0.6, =0.5, Fortran, om v14.
K	aus Rabbertz	CPPM, Marseille, 14.	02.2012	HERA	Fitter Meeting

Scope of Release

- Generic code to read fastNLO v2 tables: fastNLO_reader
 - Installable from autotools distribution tarball
 - Only dependency: LHAPDF
 - Comes in two flavors, Fortran and C++
 - Different code base, same results at O(10⁻¹⁰)
 - Fortran does not yet deal with flexible scale DIS tables
- New tables:
 - ATLAS Inclusive Jets, http://arxiv.org/abs/1112.6297, including 2loop threshold corrections at default scale (pT_{iet}), R=0.4 and 0.6
 - CMS Inclusive Jets, Phys. Rev. Lett. 107 (2011) 132001, including 2-loop threshold corrections at default scale, R=0.5, and as proof of concept the CMS non-perturbative correction factors and data points
 - CMS: Table converted from v14 for comparison

Klaus Rabbertz

Installation

Install packages produced with standard autotools, just run

- ./configure -prefix=your/local/dir
- make; make install
- In case of different location of LHAPDF use
 - ./configure –prefix=your/local/dir --with-lhapdf=path/to/lhapdf
 - Error message with hints if still not found
- For more options check
 - ./configure -help
- And also look into the README file
- Executables: fnlo-fread and fnlo-cppread, type
 - fnlo-fread -h (or fnlo-cppread -h)
- for command line arguments (table file, PDF file)

Initial Output

CPPM, Marseille, 14.02.2012

Klaus Rabbertz

#######################################	***************************************	
<pre># fnlo-read: Program Steering</pre>	g	
#		
<pre># fnlo-read: Evaluating table</pre>	e: fnl1014_v2_all.tab	
<pre># fnlo-read: Using PDF set</pre>	: cteq66.LHgrid	
*************************	***************************************	
#######################################	*****	
# alphas-grv: First call:		
#######################################	***************************************	
# ALPHAS-GRV: PI	= 3.141592653589793	
# ALPHAS-GRV: M_Z/GeV	= 91.187600	
# ALPHAS-GRV: a s(M Z)	= 0.118500	
# APLHAS-GRV: a s loop	= 2	
# APLHAS-GRV: flavor-matching	g = F	Č
# APLHAS-GRV: nf (M Z)	= 5	
#######################################	*######################################	

Start parameters of default internal alpha_s code for comparison

Basic evaluation code ... Other evolution code can be used/interfaced e.g. from LHAPDF \rightarrow edit, recompile Default output: List of LO and NLO x sections for selected PDF Loop over scale variations, PDF members, alpha_s variations ... \rightarrow edit, recompile

Scenario Information 1

Information on fastNL0 scenario: fnl1014 # Description: d2sigma-jet dpTd|y| [pb GeV] CMS Collaboration # **Measurement** # Inclusive Jet pT # anti-kT R=0.5 # arXiv:1106.0208, Phys. Rev. Lett. 107, 132001 (2011). # # Centre-of-mass energy Ecms: 7000. GeV # Total no. of bins Tot. no. of observable bins: 176 in 2 dimensions: # **Exceptional!** No. of table contributions # No. of contributions 5 Normally 2 or 3. Contribution 1: L0 # # No. of events: 3000000000 Info for 1st contribution: # provided by: # NL0Jet++ 4.1.3 # Z. Nagy, Phys. Rev. Lett. 88, 122003 (2002), LO from NLOJet++ Z. Nagy, Phys. Rev. D68, 094002 (2003). # # Scale dimensions: 1 Referenz for used code is pT jet [GeV] # Scale description for dimension 1: Number of scale variations for dimension 1: 1 # included in table where it # Available scale settings for dimension 1: # Scale factor number 1: 1.0000 belongs! # Number of scale nodes for dimension 1: 6

Klaus Rabbertz

Scenario Information 2

Contribution 3: THC 2-loop # # No. of events: 270336000 # provided by: # Owens/Wobisch # 2-loop threshold corrections for the inclusive jet # cross section in pp and ppbar according to: # N. Kidonakis, J.F. Owens, Phys. Rev. D63, 054019 (2001). # Scale dimensions: 1 # Scale description for dimension 1: pT jet [GeV] # Number of scale variations for dimension 1: 1 Available scale settings for dimension 1: # Scale factor number 1: 1.0000 Number of scale nodes for dimension 1: # 6 Contribution 4: # **Non-perturbative** NP Correction # # No. of events: 0 Corrections # provided by: Pythia6 D6T & Herwig++ 2.3 # # T. Sjöstrand, S. Mrenna, P. Skands, JHEP 05, 026 (2006), # R. Field, Acta Phys. Polon. B39, 2611 (2008), M. Bähr et al., Eur. Phys. J. C58, 639 (2008), # CMS Collaboration, arXiv:1106.0208, Phys. Rev. Lett. 107, 132001 (2011). # Scale dimensions: 0

Threshold Corrections

Klaus Rabbertz

Technical Cross-check

tkdiff between Fortran and C++, ALL differences in color ...!

	Diff 4.	1.4										
le <u>E</u> dit	<u>V</u> iew №	lar <u>k M</u> er <u>i</u>	ge									
: 6c6		-	⇒船	Merge: 🔄	; 🧲 🔿	🔁 Diff:	i 🐺 🛂	1	皆 🛛 Mark: 🍠 💥			
						fnl1	014_v14_c	v21_fread_1	1062.log	,		
126	#######	#########	#######	*##########	#########	#########	##########	*******	******	*****	<i>****************************</i> *********	
127	Cross S	Sections										
129 130	The sca	ale facto: 	r choser	ι here is: 	1.00	0 						
131	IObs	Bin Size	IODim1	[pT_[GeV	1]]	IODim2	[y]	LO cross section	NLO cross section	K NLO	
132	1	3.000	1	18.00	21.00	1	0.00E+00	5.00E-01	1.57274581281E+07	1.63402311907E+07	1.03896	
134	2	3.000	2	21.00	24.00	1	0.00E+00	5.00E-01	8.38588042457E+06	8.92499652457E+06	1.06429	
135	3 4	4.000	3 4	24.00 28.00	28.00 32.00	1	0.002+00	5.00E-01 5.00F-01	4.44617619413E+06 2.32175304480F+06	4.0009505100/L+U0 9 48730373504F+N6	1.05460	
137	5	5.000	5	32.00	37.00	1	0.00E+00	5.00E-01	1.22985606580E+06	1.31501340014E+06	1.06924	
138	6	6.000	6	37.00	43.00	1	0.00E+00	5.00E-01	6.20058716819E+05	6.57353581654E+05	1.06015	
139	7	6.000	7	43.00	49.00	1	0.00E+00	5.00E-01	3.19183821541E+05	3.42274328312E+05	1.07234	
140	8	7.000	8	49.00	56.00	1	0.00E+00	5.00E-01	1.69704477492E+05	1.83046529104E+05	1.07862	
141	10	8.000 10.00	10	56.00 64.00	64.00 74.00	1	0.002+00	5.00E-01 5.00F-01	4 47860610011F+04	9.55576371649E+04 4.83308734386F+04	1.07620	
143	11	10.00	11	74.00	84.00	1	0.00E+00	5.00E-01	2.26334926926E+04	2.44897733616E+04	1.08201	
144	12	13.00	12	84.00	97.00	1	0.00E+00	5.00E-01	1.14157974746E+04	1.23657778458E+04	1.08322	
145	13	17.00	13	97.00	114.0	1	0.00E+00	5.00E-01	5.20864150541E+03	5.66705156918E+03	1.08801	
146	14	19.00	14	114.0	133.0	1	0.00E+00	5.00E-01	2.26986160457E+03	2.47492393341E+03	1.09034	
147	15	20.00	15	133.U 153.0	153.U 174 0	1	0.00E+00	5.00E-01 5.00E-01	1.03027761770E+03 / 0/595020/06F+03	1.12801906894£+03 5 //3/0660066F±02	1.09487	
140	17	22 00	17	174 0	196 0	1	0.00E+00	5 00E-01	2 48671425936E+02	2 74189028880E+02	1 10262	
150	18	24.00	18	196.0	220.0	ī	0.00E+00	5.00E-01	1.28423986831E+02	1.42067642887E+02	1.10624	
151	19	25.00	19	220.0	245.0	1	0.00E+00	5.00E-01	6.77424165982E+01	7.54903551563E+01	1.11437	
152	20	27.00	20	245.0	272.0	1	0.00E+00	5.00E-01	3.65423220021E+01	4.07221522939E+01	1.11438	
153	21	28.00	21	272.0	300.0	1	0.00E+00	5.00E-01	2.00810227037E+01	2.24894597220E+01	1.11994	
154	22	30.00	22	300.0	330.0 362.0	1	0.005+00	5.00E-01 5.00E-01	1.1240/556895E+01 6.33683801990F±00	1.264//3/5/09E+01 7 1/852031800F+00	1.12517	
155	23	33 00	23	362 0	395 0	1	0.00E+00	5 00E-01	3 62773698109E+00	4 11706825391E+00	1 13489	
157	25	35.00	25	395.0	430.0	ī	0.00E+00	5.00E-01	2.10813697037E+00	2.40328694241E+00	1.1.001	
158	26	38.00	26	430.0	468.0	1	0.00E+00	5.00E-01	1.22390945155E+00	1.40066739688E+00	1.144.2	
159	27	39.00	27	468.0	507.0	1	0.00E+00	5.00E-01	7.14273567995E-01	8.21258466624E-01	1.14978	
160	28	41.00	28	507.0	548.U	1	U.UUE+UU	5.00E-01	4.22300908307E-01	4.88483283158E-U1	1.15672	
162	29 30	46 00	29 30	540.0 592 D	638 D	1	0.00£+00 0 00£+00	5 00E-01	1 47171713316E-01	1 72087362982E-01	1 16930	
163	31	48.00	31	638.0	686.0	1	0.00E+00	5.00E-01	8.71981367924E-02	1.02345684984E-01	1.17371	
164	32	51.00	32	686.0	737.0	1	0.00E+00	5.00E-01	5.16004131315E-02	6.09739215817E-02	1.18166	ntical at M(10–
165	33	109.0	33	737.0	846.0	1	0.00E+00	5.00E-01	2.39696393032E-02	2.86096708138E-02		
166	34	838.U	34	846.0	1684.	1	U. UUE+OO	5.UUE-U1	1.64803906607E-03	2.15929120721 E -03	1.31022	•

Klaus Rabbertz

CPPM, Marseille, 14.02.2012

CMS Inclusive Jets 2010

12

CMS Note-2011-004

Theory derived with v1.4:

For given syst. experimental uncertainty stat. precision of NLO of 1% (low pT) or less sufficient

Highest pT bins are XXL in addition with large exp. stat. uncertainties

- Investigate
 - Scale Dependence
 - PDF Uncertainties
 - Sensitivity to alpha_s

Feature known from discussion with CTEQ: Small scale offset in highest pT XXL bin \rightarrow resolved in v2!

Stat. independent calculations, NLOJet++_2.0.1 \rightarrow NLOJet++_4.1.3, improved x limits/binning, ...

Klaus Rabbertz

Scales in v2

In v14: Asymmetric scale variations:

Independent variation of μ_r and μ_f by factors of 1/2 and 2 avoiding rel. factors of 4 (6-point: (1/2,1/2), (1/2,1), (1,1/2), (1,2), (2,1), (2,2) Compared to symmetric variation (2-point) $\Delta\sigma_{\mu fr}/\sigma$ Inclusive Jets fastNLO NLO (CTEQ6.6) $E_{cms} = 7 \text{ TeV}$ 0.2 Anti-k_T, R=0.5 Scale Uncertainty $(= \frac{1}{2}, 2$ 0 x.. = ½,1,2 indep. for $\mu_{.}, \mu_{.}$ -0.2 Hatched: 2-Point $0.0 \le |y| < 0.5$ Outer Lines: 6-Point 10³ 2 10 p_T/GeV Klaus Rabbertz

<u>New in v2:</u>

- Two new possibilities:
- Improved interpolation for pre-defined scale
 - Examples exist for pp/ppbar scattering (CMS incl. Jets, D0 3-Jet Mass)
 - Table size moderately larger, sufficient for many purposes
- ► Even better: Save µ_r and µ_f dependent contributions separately

 → full flexibility to compute results for arbitrary combinations of these two scales
 - Can e.g. choose p_T^2 for μ_r and Q^2 for μ_f
 - Calculations for H1 and ZEUS
 - Works now also for ppbar, testing with ATLAS dijet mass
 14.02.2012 HERAFitter Meeting

Jets Data / Theory

- Comparison of jet data from
 - STAR at RHIC
 - H1 and ZEUS at HERA
 - **CDF and D0 at Tevatron**
- **Compatible with QCD**
- Includes measurements from LHC
- **New: Updated with ATLAS** inclusive jets

fastNLO, to be uploaded, arXiv:1109:1310v2, 2012

Klaus Rabbertz

New plots from Daniel: x_1 , x_2 ranges in inclusive jets

Gluon contributions

Quark contributions

CPPM, Marseille, 14.02.2012

Gluon contributions

Quark contributions

Klaus Rabbertz

CPPM, Marseille, 14.02.2012

Quark contributions

Klaus Rabbertz

ATLAS Dijet Mass

HERAFitter Meeting

Hei	re usir	na sc	ale pT	avera	No negative x sections					
				12	. ,	m	ax	But small K	factors at hig	gh y*
I0bs	Bin Size	IODim1	[m12_[Te	eV]]]	IODim2	[y*]	L0 cross section	NLO cross section	K NLO
1	0.02000	1	0.07000	0.1100	1	0.00E+00	5.00E-01	4.04335857049E+08	3.77076355743E+08	0.93258
2	0.02500	2	0.1100	0.1600	1	0.00E+00	5.00E-01	5.36940002705E+07	5.15163176652E+07	0.95944
3	0.02500	3	0.1600	0.2100	1	0.00E+00	5.00E-01	1.01919265711E+07	1.00180081481E+07	0.98294
4	0.02500	4	0.2100	0.2600	1	0.00E+00	5.00E-01	2.83535594095E+06	2.82307316459E+06	0.99567
5	0.02500	5	0.2600	0.3100	1	0.00E+00	5.00E-01	9.92247092771E+05	1.00147064371E+06	1.00930
6	0.03000	6	0.3100	0.3700	1	0.00E+00	5.00E-01	3.78064012023E+05	3.84944182557E+05	1.01820
7	0.03500	7	0.3700	0.4400	1	0.00E+00	5.00E-01	1.41619587975E+05	1.45890009674E+05	1.03015
8	0.03500	8	0.4400	0.5100	1	0.00E+00	5.00E-01	5.59784220628E+04	5.82071322572E+04	1.03981
9	0.04000	9	0.5100	0.5900	1	0.00E+00	5.00E-01	2.36121051053E+04	2.47753042254E+04	1.04926
10	0.04000	10	0.5900	0.6700	1	0.00E+00	5.00E-01	1.03342555494E+04	1.09303160878E+04	1.05768
11	0.04500	11	0.6700	0.7600	1	0.00E+00	5.00E-01	4.73470538811E+03	5.04838992370E+03	1.06625
12	0.04500	12	0.7600	0.8500	1	0.00E+00	5.00E-01	2.22627281621E+03	2.38987023810E+03	1.07348
129	0.09000	1	1.760	1.940	8	3.50E+00	4.00E+00	2.47147477257E+04	1.11320512734E+04	0.45042
130	0.09000	2	1.940	2.120	8	3.50E+00	4.00E+00	1.23608241685E+04	4.36460280956E+03	0.35310
131	0.1050	3	2.120	2.330	8	3.50E+00	4.00E+00	5.93355777381E+03	2.62657064558E+03	0.44266
132	0.1100	4	2.330	2.550	8	3.50E+00	4.00E+00	2.72246193108E+03	1.20088197222E+03	0.44110
133	0.1150	5	2.550	2.780	8	3.50E+00	4.00E+00	1.19884116134E+03	4.94354574819E+02	0.41236
134	0.1300	6	2.780	3.040	8	3.50E+00	4.00E+00	5.04966931118E+02	1.65732994373E+02	0.32821
135	0.1350	7	3.040	3.310	8	3.50E+00	4.00E+00	1.90309622496E+02	5.62557839301E+01	0.29560
136	0.3100	8	3.310	3.930	8	3.50E+00	4.00E+00	4.39852246710E+01	1.42470181508E+01	0.32390
137	0.7700	9	3.930	5.470	8	3.50E+00	4.00E+00	1.64878716730E+00	1.66376848603E-01	0.10091
138	0.1960	1	2.550	3.040	9	4.00E+00	4.40E+00	1.08519370692E+03	2.42791287352E+02	0.22373
139	0.4920	2	3.040	4.270	9	4.00E+00	4.40E+00	1.01979645090E+02	2.40265257563E+01	0.23560

CPPM, Marseille, 14.02.2012

Klaus Rabbertz

ATLAS Dijet Mass

Within same flexible-scale table using now additional exp. of y* factor First application of flexible-scale table in pp x sections K factors improved as suggested in ATLAS publication

121 0.09000 5 1.760 1.940 7 3.00E+00 3.50E+00 6.35427568486E+03 5.98677448962E+03 0.94 122 0.09000 6 1.940 2.120 7 3.00E+00 3.50E+00 3.01826719152E+03 2.59343103139E+03 0.85 123 0.1050 7 2.120 2.330 7 3.00E+00 3.50E+00 1.39004545812E+03 1.26626648970E+03 0.91 124 0.1100 8 2.330 2.550 7 3.00E+00 3.50E+00 6.05397545736E+02 4.71383534578E+02 0.77	216 925 095 863 212 300
122 0.09000 6 1.940 2.120 7 3.00E+00 3.50E+00 3.01826719152E+03 2.59343103139E+03 0.85 123 0.1050 7 2.120 2.330 7 3.00E+00 3.50E+00 1.39004545812E+03 1.26626648970E+03 0.91 124 0.1100 8 2.330 2.550 7 3.00E+00 3.50E+00 6.05397545736E+02 4.71383534578E+02 0.77	925 095 863 212 300
123 0.1050 7 2.120 2.330 7 3.00E+00 3.50E+00 1.39004545812E+03 1.26626648970E+03 0.91 124 0.1100 8 2.330 2.550 7 3.00E+00 3.50E+00 6.05397545736E+02 4.71383534578E+02 0.77	.095 863 212 300
124 0.1100 8 2.330 2.550 7 3.00E+00 3.50E+00 6.05397545736E+02 4.71383534578E+02 0.77	863 212 300
	212 300
125 0.1150 9 2.550 2.780 7 3.00E+00 3.50E+00 2.60448074223E+02 2.19328183457E+02 0.84	300
126 0.1300 10 2.780 3.040 7 3.00E+00 3.50E+00 1.05168809161E+02 8.86573184111E+01 0.84	
127 0.2850 11 3.040 3.610 7 3.00E+00 3.50E+00 2.58231089299E+01 2.01999728660E+01 0.78	224
128 0.7150 12 3.610 5.040 7 3.00E+00 3.50E+00 1.26139283969E+00 8.42048200351E-01 0.66	755
129 0.09000 1 1.760 1.940 8 3.50E+00 4.00E+00 1.72927102352E+04 1.48219438223E+04 0.85	712
130 0.09000 2 1.940 2.120 8 3.50E+00 4.00E+00 8.69399157133E+03 6.67217855935E+03 0.76	745
131 0.1050 3 2.120 2.330 8 3.50E+00 4.00E+00 4.19230808938E+03 3.51738853546E+03 0.83	901
132 0.1100 4 2.330 2.550 8 3.50E+00 4.00E+00 1.93254151699E+03 1.60395602406E+03 0.82	997
133 0.1150 5 2.550 2.780 8 3.50E+00 4.00E+00 8.54637132530E+02 6.86500568967E+02 0.80	327
134 0.1300 6 2.780 3.040 8 3.50E+00 4.00E+00 3.61445572890E+02 2.62022802533E+02 0.72	493
135 0.1350 7 3.040 3.310 8 3.50E+00 4.00E+00 1.36818401919E+02 9.58563033375E+01 0.70	061
136 0.3100 8 3.310 3.930 8 3.50E+00 4.00E+00 3.17683134169E+01 2.26530880711E+01 0.71	.307
137 0.7700 9 3.930 5.470 8 3.50E+00 4.00E+00 1.19973639554E+00 6.21475083804E-01 0.51	801
138 0.1960 1 2.550 3.040 9 4.00E+00 4.40E+00 7.35596741054E+02 5.14249165497E+02 0.69	909
<u>139</u> 0.4920 2 3.040 4.270 9 4.00E+00 4.40E+00 6.99309748151E+01 4.84475413111E+01 0.69	270

- Public release of generic code to read fastNLO v2 tables available: fastNLO_reader_2.1.0
- Released simultaneously: ATLAS and CMS inclusive jet tables
- More tables to come, in particular DIS
- Please try it out, we are happy to receive feedback and answer questions

