

Charged jet spectra in proton-proton collisions with ALICE at LHC

Michal Vajzer, Nuclear Physics Institute, on behalf of the ALICE collaboration

Motivation

- Jets originate from hard scattered partons (large Q²)
- Test of QCD
 - non-perturbative: PDFs and fragmentation
 - perturbative: hard scattering
- Partons are important probes for nuclear medium effects
 - pp reactions form baseline

The ALICE detector system

Charged jets

- theory: final state of hard parton
- experiment: **spray of particles**
- reconstruction:
 - from charged particles
 - **FastJet*** anti- k_{T} algorithm
 - various resolution parameters R
 - | η_{jet} | < 0.9 R
- subtraction of Underlying Event
- deconvolution of detector effects EPS HEP 2013 Michal Vajzer

Yield comparison with ATLAS experiment

observed good agreement

G. Aad et al., Phys. Rev. D 84 (2011) 054001

EPS HEP 2013

Michal Vajzer

Cross section ratio

- ratio of jet spectra reconstructed with different R
- indirect measurement of radial properties

- study of jet structure
- focus on individual constituents of jet

→ in order to obtain details on evolution of parton shower

Average charged track multiplicity in leading jet

- increasing with jet p_{T}
- consistent with
 PYTHIA and PHOJET

Particle distributions

• particle momentum spectra in jets

 \rightarrow less dependent on jet energy scale

• scaled distribution to jet momentum $\xi^{ch} = \ln (p_T^{jet,ch}/p_T^{particle})$

Particle distributions

• particle momentum spectra in jets

 \rightarrow less dependent on jet energy scale

• scaled distribution to jet momentum $\xi^{ch} = \ln (p_T^{jet,ch}/p_T^{particle})$

- reconstructed charged jets in proton-proton collisions at 2.76 and 7 TeV
 - large variations in descriptions provided by MC
 - good agreement with results of ATLAS experiment at 7 TeV
- study of fragmentation functions and jet shapes in proton-proton collisions at 7 TeV
 - 'hump-backed plateau' in ξ distribution indicate QCD coherence
 - increased collimation with increasing jet p_{T}
 - consistent with predictions from MC and QCD expectations

Thank You for Your attention

Backup

Jet algorithm

- FastJet package
- Sequential recombination of tracks according to
 - minimum of inverse transverse momenta squares
 - clusters high momenta particles first
 - displacement in φ η space
 - close tracks are processed sooner than pair of similar displaced tracks
- p_{T} recombination scheme

boost invariant

Analysis procedure

- Raw jets
 - minimum bias proton-proton collisions
 - underlying event subtraction (event-by-event)
 - UE subtracted jets
 - unfolding to correct for detector effects
 - response matrix from PYTHIA + GEANT
- Corrected jets

Underlying event

• *proton* is composite

 \rightarrow many processes in one collision usually soft processes

- UE energy density determination
 - at same η
 - φ is shifted by ±90°
 - charged tracks are summed in cone with radius *R*
- event-by-event subtraction

Unfolding

- Bayesian unfolding
 - \rightarrow based on Bayes' theorem
- SVD of Response Matrix (RM)
 - \rightarrow decomposition of RM to singular values
- Bin-by-bin correction
 - → correction from corrected & uncorrected simulated spectra applied to data

- G. D'Agostini, NIM A 362 (1995) 487.
- A. Höcker and V. Kartvelishvili, NIM A 372 (1996) 469

Ratio of jet spectra

ratio $\rightarrow 1 \Rightarrow$ 'whole jet – jet core' $\rightarrow 0$

Michal Vajzer

Radial momentum distribution

Michal Vajzer