Jet performance in CMS

EPS HEP 2013 Stockholm, 18 July 2013 QCD: Jet Physics

Henning Kirschenmann on behalf of the CMS Collaboration Universität Hamburg

CMS detector(for jets)

 $\eta = 0.0$

HCAL: Brass/scintillator($|\eta| < 3$)

Central jets (with ECAL): $\frac{\sigma_{Calo}(E)}{E}\!\sim\!\frac{100\%}{\sqrt{E}}\oplus 5\%$

ECAL: *PbWO*₄Crystal calorimeter

Photons (~60 GeV): 1.1-2.5% in the barrel

Tracker: Silicon Pixel and Strip detector

1.5% at 100 GeV 10% at 1000 GeV

CMS pecifics Very precise tracker and ECAL

Highly granular ECAL

Strong magnetic field (3.8 T)

Tracking and calorimeters contained within superconducting magnet

Particle Flow (PF) approach

- Tries to reconstruct individual particles to form jets using all subdetector information
- Commissioned successfully on data
- Used in most CMS analyses

Particle Flow improves jet energy resolution

- Large fraction of PF jet components well measured by ECAL/tracker
- Jet energy resolution improved, especially at low p_T , same resolution at very high p_T for different jet types

Challenging pileup conditions in 2012

Methods for pileup mitigation:

Particle Flow Charged Hadron Subtraction (CHS)

- Majority of pileup is from charged particles
- CHS removes charged hadrons from pileup vertices

Additional pileup corrections for remaining pileup components

Jet energy corrections

JEC corrects reconstructed jets – on average – back to particle level.

Factorized approach:

- Pileup corrections to correct for offset energy
- Correction to particle level jet vs. p_T and η from simulation
- Only for data: Small residual corrections (relative and absolute) to correct for differences between data and simulation

Pileup corrections

- Average per-event UE/pileup density ρ and jet-area A used to subtract offset energy from additional minimum bias events (pileup).
- Parameterized for data and simulation as a function of ρ , A, p_T and η

when the state of the state of

Corrections from simulation

- Correction for p_T and η dependence
- Reference scale is that of the particle/generator jet
- Final correction step for simulated data

Jet energy scale determination in data

Appled on this wife (p) which (p) wh

Absolute residuals (γ/Z +jet)

$$R_{balance} = \frac{p_{T}^{jet}}{p_{T}^{\gamma/Z}} \text{ and } R_{MPF} = 1 + \frac{\vec{E}_{T}^{miss} \cdot \vec{p}_{T}^{\gamma/Z}}{\left(p_{T}^{\gamma/Z}\right)^{2}}$$

MPF (Missing \vec{E}_T Projection Fraction)

• Idea: No intrinsic $\overrightarrow{E}_T^{miss}$ in such events (only induced by mismeasurement): projection of $\overrightarrow{E}_T^{miss}$ along reference object axis gives response

Complementary analyses/topologies used for calibration of central detector ($|\eta|$ <1.3)

- $Z \to \mu^+ \mu^-$ as central method, $Z \to e^+ e^-$, γ as cross checks
- Extrapolation to perfect topology
 Residual difference of response from MPF
 method used as residual correction

Relative residuals (dijet)

 $|\eta|$

$$B = \frac{p_T^{\text{probe}} - p_T^{tag}}{p_T^{\text{ave}}} \rightarrow \langle R_{\text{balance}} \rangle = \frac{2 + \langle B \rangle}{2 - \langle B \rangle} = \frac{\langle p_T^{\text{probe}} \rangle}{\langle p_T^{tag} \rangle}$$

$$R_{\text{MPF}} = 1 + \frac{\vec{E}_T^{\text{miss}} \cdot \vec{p}_T^{tag}}{\langle tag \rangle^2} \qquad \text{narrow } p_T^{\text{ave}} \text{ bin}$$

 (p_T^{out}) Dijet events used to relate response in central barrel region to any η

- Suppression of additional event activity (third jet)
- MPF method, traditional dijet balance as cross-check
- Below 5% within tracker coverage

2

0.95

JEC uncertainties

- Pileup, extrapolation, and jet flavor dominating uncertainties in $|\eta| < 1.3$, relative scale at high $|\eta|$
- Uncertainties below 1% for jets with $p_T > 100 \text{ GeV}$

Conclusion

- Partice Flow algorithm used for most analyses in CMS(energy resolution better than 12 % at $p_T > 30~{\rm GeV})$
 - ▶ Challenging pileup conditions tackled by advanced techniques like charged hadron subtraction
- CMS factorizes Jet Energy corrections:
 - Make best use of simulation that accurately describes data
 - Correct for small remaining differences using data-driven residual corrections
- ▶ Small additional correction on data: \sim 2% absolute scale (Z+jet), relative inter- η (dijets)
- \blacktriangleright JES uncertainty <1% for $p_T > 100$ GeV in central region

Backup

References

- Determination of jet energy calibration and transverse momentum resolution in CMS
 - JINST 6 P11002
 - Most recent paper on Jet Energy Correction and Uncertainties
- Detector performance summaries
 - Status of the 8 TeV Jet Energy Corrections and Uncertainties based on 11fb⁻¹ of data in CMS (CMS DP-2013/011)
 - Jet Energy Corrections and Uncertainties. Detector Performance Plots for 2012 (CMS DP 2012/012)
 - Jet Energy Scale performance in 2011 (CMS DP-2012/006)
- CMS Physics Analysis Summaries
 - Jet Performance in pp Collisions at $\sqrt{s} = 7TeV$ (JME-10-003)
 - Jet Energy Corrections determination at $\sqrt{s} = 7TeV$ (JME-10-010)
 - Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector (CMS-PAS-PFT-10-001)

JEC uncertainty sources

- Flavor uncertainties now relative to reference Z+jet flavor composition, default assumed composition for uncertainties is QCD mixture.
- Part of uncertainty source framework: Provide ~20 individual sources that are mutually uncorrelated. Propagating individual sources to potentially reduce total uncertainty on measured quantities.

Uncertainty sources

Absolute scale

- Scale uncertainty (combined ECAL (photon) and tracking (Z) reference scale)
- FSR +ISR correction
- Statistical uncertainty

Relative scale

- Jet energy resolution
- Residual p_T -dependence (difference between log-linear and constant fit)
- Statistical uncertainty
- Modelling/FSR correction

Extrapolation

- Underlying event and fragmentation differences from PYTHIA/Herwig++
- Single particle response variation (±3%) propagated to jets

Pileup

- 20% of Data/MC differences in data-based random cone method (separate corrections provided)
- p_T dependence of measured offset, e.g. due to zero suppression effects
- Random cone method bias in MC

Jet flavor

Based on PYTHIA/Herwig++ differences in uds/c/b-quark and gluon responses, default covers
extrapolating from Z+jet to dijet QCD flavor mixture, but gives access to individual sources

Time

Observed instability in the endcap region, presumably linked to aging

Particle Flow Composition

Particle Flow Composition

- Additional handle to quality of MC modelling
- agreement for track (charged hadrons), ECAL (photons), and HCAL (neutral hadrons) energies to within 1% in barrel

Particle Flow Composition

Particle Flow Composition

- Additional handle to quality of MC modelling
- agreement for track (charged hadrons), ECAL (photons), and HCAL (neutral hadrons) energies to within 1% in barrel

Relative Residuals, dijets

Need for very high statistics

• QCD dijet events have very high statistics (and high pt-reach)

Caveat

Not as well defined reference object

Strategy

- Calibrate jets relative to central region
- Data/MC ratios as residual correction
- Extrapolate to perfect topology

Event selection

- Two highest p_T jets
- $\Delta \varphi(j1, j2) > 2.7$
- $|\eta_{\text{tag}}| < 1.3$

Relative response from dijet balance

$$B = rac{p_T^{ ext{probe}} - p_T^{tag}}{p_T^{ ext{ave}}}
ightarrow \left\langle R_{ ext{balance}}
ight
angle = rac{2 + \left\langle B
ight
angle}{2 - \left\langle B
ight
angle} = rac{\left\langle p_T^{ ext{probe}}
ight
angle}{\left\langle p_T^{tag}
ight
angle}$$
 narrow $oldsymbol{p}_T^{ ext{ave}}$ bin

MPF (Missing \vec{E}_T Projection Fraction)

$$R_{ ext{MPF}} = 1 + rac{\overrightarrow{E}_{T}^{ ext{miss}} \cdot \overrightarrow{p}_{T}^{tag}}{\left(p_{T}^{tag}
ight)^{2}}$$

Absolute residuals, Z+jet and γ+jet

2 complementary response estimators: p_T balance

• $R_{\text{balance}} = \frac{p_T^{\text{jet}}}{p_T^{\gamma}}$

MPF (Missing \vec{E}_T Projection Fraction)

•
$$R_{\text{MPF}} = 1 + \frac{\vec{E}_T^{\text{miss}} \cdot \vec{p}_T^{\gamma}}{(p_T^{\gamma})^2}$$

- Idea: No intrinsic $\vec{E}_T^{\rm miss}$ in such events (only induced by mismeasurement)
 - projection of $\vec{E}_T^{\mathrm{miss}}$ along reference object axis gives response

t cuts on n^{Jet2}

Data/MC ratio determined for different cuts on $p_T^{ m Jet2}$

- Extrapolation to zero additional event activity
- MPF largely reduces dependence (default method)

Absolute residuals, Z+jet and γ +jet

Z+jet gives central value

- Data/MC ratios of both methods agree
- Z+jet and γ +jet as cross checks