

Run Number: 179938, Event Number: 12054480 Date: 2011-04-18 17:57:29 EDT

Inclusive and Dijet Jet Production Measured with the ATLAS Detector

Lucy Kogan

On Behalf of the ATLAS Collaboration

EPS HEP 2013

- Introduction
- Theory predictions and Jet Reconstruction
- High Mass Dijet cross sections
 - up to invariant mass 4.6 TeV
- Inclusive jet cross sections
 - $\sqrt{s} = 7$ and $\sqrt{s} = 2.76$ TeV
- Conclusions

- **QCD Jet Production** is a **dominant process** at the LHC
 - Probes the TeV scale
- Many reasons to study the production of jets:
 - Test of QCD predictions at high energy
 - Constraints for Parton Distribution Functions
 - Measurement of strong coupling strength
 - Important backgrounds for many analyses
- Many analyses study jets and jet production at ATLAS
 - Presented here: inclusive and dijet cross section measurements

2011 dijet event : invariant mass 4.0 TeV

Jet cross sections and ratios compared to NLO theory predictions

• NLOJET++

- pQCD calculations at NLO
- CT10 NLO Parton Distribution Functions as nominal
- Also compare to MSTW2008, NNPDF2.1, HERAPDF1.5 PDFs, ABM 11 NLO
- Bin-by-bin multiplicative factors applied for hadronisation and underlying event
 - Pythia 6.425 with AUET2B tune

• POWHEG

- NLO matrix element calculation
- CT10 NLO PDFs
- Parton shower matched to Pythia or Herwig
 - Improved theoretical predictions expected
 - Additional uncertainties due to matching and tuning of parton shower

Results in data are unfolded to particle level for comparison to theory

Jet Reconstruction and Calibration

- Jets reconstructed from electromagnetic clusters of calorimeter cells using Anti-k_t algorithm with R = 0.4 and R = 0.6
- Jet Energy Scale calibration applied:

xford

Dijet production at \sqrt{s} = 7 TeV

• 260 GeV $\le m_{12} \le 4.6$ TeV

• Binned in $y^* = \frac{|y_1 - y_2|}{2}$, $y^* < 2.5$

Lucy Kogan

)xford hvsics

EPSHEP 2013 : Inclusive and Dijet production measured with the ATLAS detector

Anti – kt R = 0.6 jets

Dijet production at $\sqrt{s} = 7$ TeV

- Ratios to NLOJET++ with CT10 PDF
- In general data is in agreement with theory predictions
 - Differences up to 40% at high y* & dijet mass: theory predictions overestimate cross section

Lucy Kogan

)xford hvsics

Inclusive Jets: $\sqrt{s} = 7$ TeV and $\sqrt{s} = 2.76$ TeV

Inclusive jet cross section measurements at two different \sqrt{s}

- \circ 20 GeV \leq Jet $p_T \leq$ 1.5 TeV, |y| < 4.4
- \sqrt{s} = 2.76 TeV, luminosity 0.20 pb⁻¹
 - \circ Close to highest energy $p\overline{p}$ collisions
 - $20 \le p_T \le 430 \text{ GeV}, |y| < 4.4$

Phys.Rev. D86 (2012) 014022, arXiv:1304.4739

Inclusive Jets: Cross section with NLOJET++

Comparison to NLOJET++ with different PDF sets

- Ratio with respect to NLOJET++, CT10 PDFs
- Good agreement within systematic uncertainties
- Data systematically lower than theory prediction
 - Particularly at high pt and rapidity
 - MSTW follows trend better •

xford hvsics

Lucy Kogan

Inclusive Jets: Cross section with POWHEG

New version of POWHEG BOX used for \sqrt{s} = 2.76 TeV predictions

- At $\sqrt{s} = 7$ TeV problem with parton shower matching caused fluctuations in final observables
- New version with modified matching scale released by POWHEG BOX authors(<u>arXiv:1303.3922v1</u>)

xford

Inclusive Jets: Cross section with POWHEG

ATLAN

Comparison to POWHEG with different parton showers and tunes

- Ratio with respect to NLOJET++, CT10 PDFs
- Best agreement with POWHEG + Pythia AUET2B
- New matching parameters in POWHEG for \sqrt{s} = 2.76 TeV
 - Agreement with data within uncertainties

)xford

P_{hysics} Inclusive jets: ratio of $\sqrt{s} = 7$ and 2.76 TeV

- Jet cross sections as function of jet p_T and $x_T = \frac{2p_T}{\sqrt{s}}$
- **Ratios of cross sections** at \sqrt{s} = 7 TeV and \sqrt{s} = 2.76 TeV **reduce uncertainties**:

$$\rho(y, x_T) = \left(\frac{2.76 \, TeV}{7 \, TeV}\right)^3 \frac{\sigma(y, x_T, 2.76 \, TeV)}{\sigma(y, x_T, 7 \, TeV)}$$
$$\rho(y, p_T) = \frac{\sigma(y, p_T, 2.76 \, TeV)}{\sigma(y, p_T, 7 \, TeV)}$$

theoretical uncertainties reduced

experimental uncertainties reduced

Cross section ratio theory comparison

- $\rho(y, x_T)$ ratio shows very **good agreement** with NLOJET++ and POWHEG
 - Constant behaviour with x_T
 - => QCD asymptotic freedom and evolution of gluon PDF with QCD scale
 - Differences between different tunes are small

POWHEG follows data well in forward region

• $\rho(y, p_T)$ ratio shows differences in central region up to 10%

• Theory uncertainties are very small

)xford hvsics

٠

arXiv:1304.4739

Cross section ratio PDF comparisons

arXiv:1304.4739

$ho(y, p_T)$ ratio compared to different PDFs:

- Data higher in central region and lower in forward region
 - larger deviation for ABM11 NLO

)xford

- Jet cross sections have been measured with the ATLAS detector and compared to NLO pQCD predictions
- **Dijet cross sections** measured at $\sqrt{s} = 7$ TeV
 - Good agreement with theoretical predictions
 - **Differences at high energies and rapidities** of up to 40%
- Inclusive jet cross sections measured at \sqrt{s} = 7 TeV and \sqrt{s} = 2.76 TeV
 - In general **good agreement** with theoretical predictions
 - Cross sections can be used to constrain PDFs

Back-up slides

Lucy Kogan

The ATLAS Detector

ATLAN

- Triggers used:
 - Minimum-Bias trigger scintillators for jets 20 60 GeV
 - Central jet trigger : $|\eta| < 3.2$
 - Forward jet trigger : 3.1 < |η| < 4.9
- Different trigger in each p_T bin efficiency > 99 % with smallest possible prescale

Combined L1 + L2 trigger efficiencies

Triggers : Dijet Cross section

- Central jet triggers |η| < 3.2
- Jet energy fully contained in central trigger towers => trigger is unbiased
- Highest E_T^{EM} trigger unprescaled
- Different threshold for each trigger in the analysis
 > 99% efficiency with the smallest possible prescale

Inclusive Jets: \sqrt{s} = 7 TeV and \sqrt{s} = 2.76TeV

Inclusive jet cross section measurements at two different \sqrt{s}

Lucy Kogan

xford

Inclusive Jets: Cross section with NLOJET++

Comparison to NLOJET++ with different PDF sets

Ratio with respect to NLOJET++, CT10 PDFs

- Good agreement within systematic uncertainties
- Data systematically lower than theory prediction
 - Particularly at high pt and rapidity
 - MSTW follows trend better

<u>Phys.Rev. D86 (2012) 014022</u>, arXiv:1304.4739

Anti – kt R = 0.4 jets

Lucy Kogan

Inclusive Jets: Cross section with NLOJET++ xford

NLOJET++

Comparison to NLOJET++ with different PDF sets

- Ratio with respect to NLOJET++, CT10 PDFs
- Good agreement within statistical uncertainties
- Data systematically lower
 - Particularly at high pt and rapidity

Phys.Rev. D86 (2012) 014022, http://arxiv.org/abs/1304.4739

Anti – kt R = 0.6 jets

Lucy Kogan

hysics

Inclusive Jets: Cross section with POWHEG

ATLAN

Comparison to POWHEG with different parton showers and tunes

- Ratio with respect to NLOJET++, CT10 PDFs
- Best agreement with POWHEG + Pythia AUET2B
- New matching parameters in POWHEG for \sqrt{s} = 2.76 TeV
 - Agreement with data within uncertainties

Phys.Rev. D86 (2012) 014022, arXiv:1304.4739

Anti – kt R = 0.4 jets

Lucy Kogan

)xford

Inclusive Jets: Cross section with POWHEG

POWHEG

Comparison to POWHEG with different parton showers and tunes

- Ratio with respect to NLOJET++, CT10 PDFs
- Best agreement with Pythia AUET2B
- New matching parameters in POWHEG for \sqrt{s} = 2.76 TeV
 - Agreement with data within uncertainties

Phys.Rev. D86 (2012) 014022, http://arxiv.org/abs/1304.4739

Anti – kt R = 0.6 jets

)xford

Cross section ratio theory comparison

- $\rho(y, x_T)$ ratio shows very **good agreement** with NLOJET++ and POWHEG
 - Constant behaviour with x_T => QCD asymptotic freedom and evolution of gluon PDF with QCD scale
 - Differences between different tunes are small
 - Theory uncertainties are very small

xford

- $\rho(y, p_T)$ ratio shows differences in central region up to 10%
 - POWHEG follows data well in forward region
 - Experimental uncertainties are very small

Cross section ratio theory comparison

- $\rho(y, x_T)$ ratio shows very **good agreement** with NLOJET++ and POWHEG
 - Constant behaviour with x_T => QCD asymptotic freedom and evolution of gluon PDF with QCD scale
 - Differences between different tunes are small
 - Theory uncertainties are very small
- $\rho(y, p_T)$ ratio shows differences in central region up to 10%
 - POWHEG follows data well in forward region
 - Experimental uncertainties are very small

xford

Inclusive jets : HERA + ATLAS PDFs

- **ATLAS jet cross sections** at \sqrt{s} = 2.76 TeV and \sqrt{s} = 7 TeV **used to constrain PDFs**
 - HFRA + ATLAS PDF set
- Comparison to inclusive jet cross section at \sqrt{s} = 2.76 TeV and $\rho(y, p_T)$
- Good agreement is seen with HERA + ATLAS PDF
 - Particularly in the forward region

Inclusive jet cross section

http://arxiv.org/abs/1304.4739

 $\rho(y, p_T)$

Anti – kt R = 0.4 jets

Lucy Kogan

xford hvsics

Cross section ratio PDF comparisons

$ho(y, p_T)$ ratio compared to different PDFs:

- Data higher in central region and lower in forward region
 - larger deviation for ABM11 NLO
- Systematic uncertainty smaller than theory uncertainty

=> \sqrt{s} = 7 TeV and \sqrt{s} = 2.76TeV inclusive cross sections

can be used to constrain PDFs

)xford hysics

arXiv:1304.4739

P_{Invsics} Inclusive jets: experiment comparisons

http://arxiv.org/abs/1304.4739

Dijet production at $\sqrt{s} = 7$ TeV

- Ratios to NLOJET++ with CT10 PDF
- In general data is in agreement with theory predictions
 - Differences up to 40% at high y* & dijet mass: theory predictions overestimate cross section

)xford hvsics

Dijet production at $\sqrt{s} = 7$ TeV

- Ratios to NLOJET++ with CT10 PDF
- In general data is in agreement with theory predictions
 - Differences up to 40% at high y* & dijet mass: theory predictions overestimate cross section

)xford hvsics

Jet Energy Scale with 2011 data

- 2010 Jet Energy Scale and uncertainties used for all analyses presented here
- 2011 Jet Energy Scale calibration scheme :

Jet Energy Scale (JES) uncertainties in 2011 derived from insitu analyses

)xford hvsics