Standard Model Theory for Collider Physics

Daniel de Florian Dpto. de Física - FCEyN- UBA Argentina

HEP 2013 Stockholm, July 22

Standard Model Theory for Collider Physics

Daniel de Florian

- ► LHC was incredibly successful at 7 & 8 TeV
- Everything SM like (including Higgs)

Need to be precise on cross-sections and SM parameters $m_H, \, m_t, \, \alpha_s, ...$

Vacuum stability in the SM at NNLO requires

Degrassi et al; Bezrukov et al; Alekhin, Djouadi, Moch; Masina (2012)

$$m_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \,\text{GeV}}{0.9 \,\text{GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \,\text{GeV}$$

Need to be precise on cross-sections and SM parameters $m_H, m_t, \alpha_s, ...$

Vacuum stability in the SM at NNLO requires

Degrassi et al; Bezrukov et al; Alekhin, Djouadi, Moch; Masina (2012)

 $m_H \ge 129.2 + 1.8 \times \left(\frac{m_H}{m_H}\right)$

$$\left(\frac{n_t^{\text{pole}} - 173.2 \,\text{GeV}}{0.9 \,\text{GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.$$

(2012) 1.0 GeV

This Talk Toolkit for precise TH predictions at the LHC

In the LHC era, QCD is everywhere!

 $d\sigma = \sum_{ab} \int dx_a \int dx_b f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \times d\hat{\sigma}_{ab}(x_a, x_b, Q^2, \alpha_s(\mu_R^2)) + \mathcal{O}\left(\left(\frac{\Lambda}{Q}\right)^m\right)$ perturbative partonic cross-section

Partonic cross-section: expansion in $\alpha_s(\mu_R^2) \ll 1$ $d\hat{\sigma} = \alpha_s^n d\hat{\sigma}^{(0)} + \alpha_s^{n+1} d\hat{\sigma}^{(1)} + \dots$

Require precision for perturbative and non-perturbative contribution

HEP

PDFs

- Several groups provide pdf fits + uncertainties
- Differ by: data input, TH/bias, HQ treatment, coupling, etc

set	H.O.	data	$\alpha_s(M_Z)$ @NNLO	uncertainty	HQ	Comments
MSTW 2008	NNLO	DIS+DY+Jets	0.1171	Hessian (dynamical tolerance)	GM-VFN (ACOT+TR')	old HERA DIS
CTI0	NNLO	DIS+DY+Jets	0.118	Hessian (dynamical tolerance)	GM-VFN (SACOT-X)	New HERA DIS
NNPDF 2.3	NNLO	DIS+DY+Jets +LHC	0.1174	Monte Carlo	GM-VFN (FONLL)	New HERA DIS
ABKM	NNLO	DIS+DY(f.t.)	0.1135	Hessian	FFN BMSN	New HERA DIS
(G)JR	NNLO	DIS+DY(f.t.)+ some jet	0.1124	Hessian	FFN (VFN massless)	valence like input pdfs
HERA PDF	NNLO	only DIS HERA	0.1176	Hessian	GM-VFN (ACOT+TR')	Latest HERA DIS

PDFs

- Several groups provide pdf fits + uncertainties
- Differ by: data input, TH/bias, HQ treatment, coupling, etc

up to 5% ! >15% in Higgs cross section

set	H.O.	data	$lpha_s(M_Z)$ @NNLO	uncertainty	HQ	Comments
MSTW 2008	NNLO	DIS+DY+Jets	0.1171	Hessian (dynamical tolerance)	GM-VFN (ACOT+TR')	old HERA DIS
CTI0	NNLO	DIS+DY+Jets	0.118	Hessian (dynamical tolerance)	GM-VFN (SACOT-X)	New HERA DIS
NNPDF 2.3	NNLO	DIS+DY+Jets +LHC	0.1174	Monte Carlo	GM-VFN (FONLL)	New HERA DIS
ABKM	NNLO	DIS+DY(f.t.)	0.1135	Hessian	FFN BMSN	New HERA DIS
(G)JR	NNLO	DIS+DY(f.t.)+ some jet	0.1124	Hessian	FFN (VFN massless)	valence like input pdfs
HERA PDF	NNLO	only DIS HERA	0.1176	Hessian	GM-VFN (ACOT+TR')	Latest HERA DIS

Luminosities with common $\alpha_s = 0.118$ PDF4LHC, Ball et al $\mathcal{L}_{ij}(\tau \equiv M_X^2/S) = \frac{1}{S} \int_{\tau}^{1} \frac{dx}{x} f_i(x, M_X^2) f_j(\tau/x, M_X^2)$

gluon-gluon

•DIS (PDFS) not well covered : some experiments pull value down

•DIS (PDFS) not well covered : some experiments pull value down

PDH4LHC recommendation

Compute pdfs uncertainties using MSTW & CT & NNPDF (68%cl)
Obtain the envelope of all bands and use

 $\Delta \alpha_s(M_Z) = \pm 0.0012 (\pm 0.002)$ at 68% (90%) c.l.

Precise LHC data will have important effect on validation & improvement

The NLO revolution

talk by Zvi Bern

Why NLO?

Accurate Theoretical Predictions

shape and normalization first error estimate

- Large Corrections : check PT Higgs
- Opening of new channels
- Effect of extra radiation jet algorithm dependence

Amazing progress in the last few years

Large multiplicities relevant for LHC

- Improved techniques for loop
- High level of automation

Experimenter's wish-list

Process $(V \in [Z, W, z])$	Commonto
Process $(V \in \{Z, W, \gamma\})$	Comments
Calculations completed since Les Houches 2005	
1. $pp \rightarrow VV$ jet	WWjet completed by Dittmaier/Kallweit/Uwer [4,5]; Campbell/Ellis/Zanderighi [6].
2. $pp \rightarrow$ Higgs+2jets	Z Zjet completed by Binoth/Gleisberg/Karg/Kauer/Sanguinetti [7] NLO QCD to the gg channel completed by Campbell/Ellis/Zanderighi [8]; NLO QCD+EW to the VBF channel
3. $pp \rightarrow V V V$	completed by Ciccolini/Denner/Dittmater [9,10] ZZZ completed by Lazopoulos/Melnikov/Petriello [11] and WWZ by Hankele/Zeppenfeld [12] (see also Binoth/Ossola/Papadopoulos/Pittau [13])
4. $pp \rightarrow t\bar{t}b\bar{b}$	relevant for $t\bar{t}H$ computed by Bredenstein/Denner/Dittmaier/Pozzorini [14,15] and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek [16]
5. $pp \rightarrow V+3$ jets	calculated by the Blackhat/Sherpa [17] and Rocket [18] collaborations
Calculations remaining from Les Houches 2005	
6. $pp \rightarrow t\bar{t}$ +2jets 7. $pp \rightarrow VV b\bar{b}$, 8. $pp \rightarrow VV$ +2jets	relevant for $t\bar{t}H$ computed by Bevilacqua/Czakon/Papadopoulos/Worek [19] relevant for VBF $\rightarrow H \rightarrow VV$, $t\bar{t}H$ relevant for VBF $\rightarrow H \rightarrow VV$ VBF contributions calculated by (Bozzi/)Jäger/Oleari/Zeppenfeld [20–22]
NLO calculations added to list in 2007	
9. $pp \rightarrow b\bar{b}b\bar{b}$	$q\bar{q}$ channel calculated by Golem collaboration [23]
NLO calculations added to list in 2009	
10. $pp \rightarrow V+4$ jets 11. $pp \rightarrow Wb\bar{b}j$ 12. $pp \rightarrow t\bar{t}t\bar{t}$	top pair production, various new physics signatures top, new physics signatures various new physics signatures
Calculations beyond NLO added in 2007	
13. $gg \rightarrow W^*W^* \mathcal{O}(\alpha^2 \alpha_s^3)$ 14. NNLO $pp \rightarrow t\bar{t}$ 15. NNLO to VBF and Z/γ +jet	backgrounds to Higgs normalization of a benchmark process Higgs couplings and SM benchmark
Calculations including electroweak effects	
16. NNLO QCD+NLO EW for W/Z	precision calculation of a SM benchmark

The NLO revolution

talk by Zvi Bern

Why NLO?

Accurate Theoretical Predictions

shape and normalization first error estimate

- Large Corrections : check PT Higgs
- Opening of new channels
- Effect of extra radiation jet algorithm dependence

Amazing progress in the last few years

Large multiplicities relevant for LHC

- Improved techniques for loop
- High level of automation

Process $(V \in \{Z, W, \gamma\})$	Comments
Calculations completed since Les Houches 2005	
1. $pp \rightarrow VV$ jet	WWjet completed by Dittmaier/Kallweit/Uwer [4,5]; Campbell/Ellis/Zanderighi [6]. ZZjet completed by Bineth/Claichare/Wore/Wayar/Sanaviaetti [7]
2. $pp \rightarrow$ Higgs+2jets	NLO QCD to the gg channel completed by Campbell/Ellis/Zanderighi [8]; NLO QCD+EW to the VBF channel completed by Circcelini/Denner/Dittmaier [9, 10]
3. $pp \rightarrow V V V$	<i>ZZ completed by</i> Lazopoulos/Melnikov/Petriello [11] and <i>WWZ</i> by Hankele/Zeppenfeld [12] (see also Binoth/Ossola/Papadopoulos/Pittau [13])
4. $pp \rightarrow t\bar{t}b\bar{b}$	relevant for $t\bar{t}H$ computed by Bredenstein/Denner/Dittmaier/Pozzorini [14,15] and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek [16]
5. $pp \rightarrow V$ +3jets	calculated by the Brockhat/Sherpa [17] and Rocket 18] coll borations
Calculations femalining from Les frouches 2005	
6. $pp \rightarrow t\bar{t}$ +2jets 7. $pp \rightarrow VV b\bar{b}$,	relevan for $t\bar{t}H$ computed by Levhacqua/Czakon/Papadopoulos/Worek [19] Levant for VBF $\rightarrow H \rightarrow VV, t\bar{t}H$
8. $pp \rightarrow VV+2$ jets	relevant for VBF \rightarrow $H \rightarrow VV$ VBF contributions calculated by (Bozzi/)Jäger/Oleari/Zeppenfeld [20–22]
9. $pp \rightarrow b\bar{b}b\bar{b}$	$q\bar{q}$ channel calculated by Golem collaboration [23]
NLO calculations added to list in 2009	
10. $pp \rightarrow V+4$ jets 11. $pp \rightarrow Wb\bar{b}j$ 12. $pp \rightarrow t\bar{t}t\bar{t}$	top pair production, various new physics signatures top, new physics signatures various new physics signatures
Calculations beyond NLO added in 2007 13. $gg \rightarrow W^*W^* \mathcal{O}(\alpha^2 \alpha_s^3)$ 14. NNLO $pp \rightarrow t\bar{t}$ 15. NNLO to VBF and Z/γ +jet	backgrounds to Higgs normalization of a benchmark process Higgs couplings and SM benchmark
Calculations including electroweak effects	
16. NNLO QCD+NLO EW for W/Z	precision calculation of a SM benchmark

A very recent example :W+5 jets !!

BlackHat Collaboration, Z.Bern et al

Multi-jet production

1000

Njet+Sherpa (Badger, Biedermann, Uwer, Yundin)

HEP

in perfect agreement with previous calculation by BlackHat (Z.Bern et al)

Standard Model Theory for Collider Physics

Final goal: Really automatic NLO calculations zero cost for humans

- Specify the process (input card)
- Input parameters
- Define final cuts
- Automatic NLO calculation "conceptually" solved

•in a few years a number of codes (among others)

GoSam + Sherpa/MadGraph Blackhat+Sherpa CutTools **OpenLoops+Sherpa** MadLoop+MadFKS

> \checkmark compete on precision, flexibility, speed, stability, ... \checkmark many features : uncertainties, ...

Best solution still to emerge, but not more NLO wish-list, do it yourself!

Individual calculations still relevant! \checkmark open the way to new methods

Resummation

Higgs transverse momentum

deF, Ferrera, Grazzini, Tommasini (2012)

 Large logarithmic corrections spoil convergence in boundaries of phase space
 State of the art: NNLL

Jet veto in Higgs @ NNLL

Banfi, Monni, Salam, Zanderighi (2012) Stewart, Tackmann, Walsh, Zuberi (2013)

Reduction in uncertainty ~10-13%
Validation of tools

Merging NLO with Parton Showers

- Resummation to NLL accuracy + realistic final states
- Allow to carry NLO precision to all aspects of experimental analysis
 - MC@NLO Frixione, Webber POWHEG Nason; Frixione, Nason, Oleari
- Can be interfaced to different tools : Herwig, Phytia, Sherpa

MC@NLO and POWHEG treat radiation differently but formally same NL accuracy

Differences usually small Higgs counterexample

addressed by POWHEG

Automation

- Provide large library of processes or different degree of automation
- aMC@NLO: full automation of NLO and PS in MC@NLO framework Frederix, Frixione, Hirschi, Pittau, Maltoni, Torrelli
- POWHEG-BOX framework Aioli, Nason, Oleari, re
- Sherpa : real matrix elements matching MC@NLO and POWHEG Krauss, Höche, Siegert, Schönher
- POWHEL: automation of ME from HELAC with POWHEG-Box

Papadopoulos, Garzelli, Kardos, Trocsanyi

- POWHEG Box + Madgraph4 Campbell, Ellis, Frederix, Nason, Oleari, Williams
- MINLO Hamilton, Nason, Oleari, Zanderighi
- UNLOPS Lönnbland, Prestel

+ many others

NNLO the new frontier

- Some measurements to few percent accuracy
- $\checkmark e^+e^- \rightarrow 3 \text{ jets}$ $e^-p \rightarrow (2+1)$ jets $\checkmark pp \to V$ $pp \rightarrow jets$ partial $pp \rightarrow V + jets$

$$\mathcal{O}(\alpha_s^2)$$

Match experimental accuracy Extract accurate information

- $\checkmark pp \to t\bar{t}$
- Some processes with still (potentially) large NNLO corrections
- $\checkmark pp \to H$ $\checkmark pp \rightarrow \gamma \gamma$ $pp \to VV$ $pp \rightarrow H + jets$ partial

meaningful comparison solid estimate of uncertainties

NNLO the new frontier

- Some measurements to few percent accuracy
- $\checkmark e^+e^- \rightarrow 3 \text{ jets}$ $e^-p \rightarrow (2+1)$ jets $\checkmark pp \to V$ $pp \rightarrow jets$ partial $pp \rightarrow V + jets$

$$\mathcal{O}(\alpha_s^2)$$

Match experimental accuracy Extract accurate information

 $\checkmark pp \to t\bar{t}$

HER

- Some processes with still (potentially) large NNLO corrections
- $\checkmark pp \to H$ $\checkmark pp \rightarrow \gamma \gamma$ $pp \to VV$

meaningful comparison solid estimate of uncertainties

 $pp \rightarrow H + jets$ partial

Keep Theorists employed after all the automatic machinery at NLO...

 $\rightarrow tt$

- Very relevant observable at colliders
- ► LHC will reach better than 5% accuracy
- top mass, pdfs, new physics

(inclusive)Full NNLO (+NNLL) available <5% TH uncertainties

Czakon, Fiedler, Mitov (2013)

Collider	$\sigma_{\rm tot} \ [{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4\%)	+4.7(2.7%) -4.8(2.8\%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

$pp \rightarrow 2 \, {\rm jets}$

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J.Pires (2013)

Pure gluon (leading colour) using antenna subtraction : NNLOJET

Similar results expected for other partonic channels

HEP UBA

$pp \rightarrow H + \text{jet}$

R.Boughezal, F.Caola, K.Melnikov, F.Petriello, M.Schulze (2013)

▶ Pure gluon only $p_T^{\text{jet}} > 30 \,\text{GeV}$

$$\sigma_{\rm LO}(pp \to Hj) = 2713^{+1216}_{-776} \text{ fb},$$

$$\sigma_{\rm NLO}(pp \to Hj) = 4377^{+760}_{-738} \text{ fb},$$

$$\sigma_{\rm NNLO}(pp \to Hj) = 6177^{-204}_{+242} \text{ fb}.$$

+60% NLO +30-40% NNLO

Another case of significantly reduced scale dependence ~4%

Les Houches NNLO wish-list (2013)

- Many of them doable in the next few years
- More realistic final states (V, top with decays)
- Larger multiplicities not possible yet
- Automation far away
- Shower requires increase in accuracy

NLO EW corrections needed

Process	known	desired	details
tī	$\sigma_{\rm tot}$ @ NNLO QCD	$d\sigma$ (top decays)	precision top/QCD,
	$d\sigma$ (top decays) @ NLO QCD	@ NNLO QCD + NLO EW	gluon PDF, effect of extra
	$\mathrm{d}\sigma(\mathrm{stable \ tops})$ @ NLO EW		radiation at high rapidity,
			top asymmetries
$t\bar{t} + j$	$\mathrm{d}\sigma(\mathrm{NWA} \mbox{ top decays})$ @ NLO QCD	$d\sigma$ (NWA top decays)	precision top/QCD
		@ NNLO QCD + NLO EW	top asymmetries
single-top	$\mathrm{d}\sigma(\mathrm{NWA} \mbox{ top decays})$ @ NLO QCD	$d\sigma$ (NWA top decays)	precision top/QCD, V_{tb}
		@ NNLO QCD (t channel)	
dijet	d σ @ NNLO QCD (g only)	$d\sigma$	Obs.: incl. jets, dijet mass
	$\mathrm{d}\sigma$ @ NLO weak	@ NNLO QCD + NLO EW	\rightarrow PDF fits (gluon at high x)
			$\rightarrow \alpha_s$
			CMS http://arxiv.org/abs/1212.6660
3j	d σ @ NLO QCD	dσ	Obs.: $R3/2$ or similar
		@ NNLO QCD + NLO EW	$\rightarrow \alpha_s$ at high scales
			dom. uncertainty: scales
			CMS http://arxiv.org/abs/1304.7498
$\gamma + j$	$d\sigma$ @ NLO QCD	d σ @ NNLO QCD	gluon PDF
	$d\sigma$ @ NLO EW	+NLO EW	γ + b for bottom PDF

Process	known	desired	details
V	$d\sigma$ (lept. V decay) @ NNLO QCD	$d\sigma(\text{lept. V decay})$	precision EW, PDFs
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNNLO QCD + NLO EW	1 /
		MC@NNLO	
V + j	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	Z + j for gluon PDF
	$d\sigma(\text{lept. V decay}) @ \text{NLO EW}$	@ NNLO QCD + NLO EW	W + c for strange PDF
V + jj	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	study of systematics of
		@ NNLO QCD + NLO EW	H + jj final state
VV'	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	off-shell leptonic decays
	$d\sigma$ (stable V) @ NLO EW	@ NNLO QCD + NLO EW	TGCs
$gg \rightarrow VV$	$d\sigma(V \text{ decays}) @ LO QCD$	$d\sigma(V \text{ decays})$	bkg. to $H \to VV$
		@ NLO QCD	TGCs
$V\gamma$	$d\sigma(V \text{ decay}) @ \text{NLO QCD}$	$d\sigma(V decay)$	TGCs
	$d\sigma(PA, V decay)$ @ NLO EW	@ NNLO QCD + NLO EW	
Vbb	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay) @ NNLO QCD	bkg. for VH $\rightarrow b\bar{b}$
	massive b	massless b	
$VV'\gamma$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs
		@ NLO QCD + NLO EW	
VV'V''	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs, EWSB
		@ NLO QCD + NLO EW	
VV' + j	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	bkg. to H, BSM searches
		@ NLO QCD + NLO EW	
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs, EWSB
		@ NLO QCD + NLO EW	
$\gamma\gamma$	d σ @ NNLO QCD		bkg to $H \to \gamma \gamma$

Process	known	desired	details
Н	d σ @ NNLO QCD	dσ @ NNNLO QCD + NLO EW	H branching ratios
	$d\sigma @ NLO EW$	MC@NNLO	and couplings
	finite quark mass effects @ NLO	finite quark mass effects @ NNLO	
H + j	$d\sigma$ @ NNLO QCD (g only)	$d\sigma @ NNLO QCD + NLO EW$	H p_T
	$d\sigma @ NLO EW$	finite quark mass effects @ NLO	
	finite quark mass effects @ LO		
H + 2j	$\sigma_{\rm tot}({\rm VBF})$ @ NNLO(DIS) QCD	d σ @ NNLO QCD + NLO EW	H couplings
	$d\sigma(gg)$ @ NLO QCD		
	$d\sigma(VBF)$ @ NLO EW		
H + V	d σ @ NNLO QCD	with $H \to b\bar{b}$ @ same accuracy	H couplings
	$d\sigma @ NLO EW$		
tĪH	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays)	top Yukawa coupling
		@ NLO QCD + NLO EW	
HH	$d\sigma @ LO QCD (full m_t dependence)$	$d\sigma @ NLO QCD (full m_t dependence)$	Higgs self coupling
	d σ @ NLO QCD (infinite m_t limit)	$d\sigma @ NNLO QCD (infinite m_t limit)$	

HEP UBA www.hep.df.uba.ar

Standard Model Theory for Collider Physics

Electroweak corrections at large energies

Sudakov logarithms induced by soft gauge-boson exchange

Higgs Boson

Gluon-gluon fusion dominates due to large gluon luminosity

22

Improved Higgs Cross-section @ LHC

- NNLL Resummation 9% at 7 TeV Catani, deF., Grazzini, Nason (2003)
- Two loop EW corrections not negligible ~ 5%
 Aglietti, Bonciani, Degrassi, Vicini (2004)
 Degrassi, Maltoni (2004)
 Actis, Passarino, Sturm, Uccirati (2008)
- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ... Higgs Cross-Section WG

$$\label{eq:scale_pdf} \begin{split} & {\rm scale_pdf} + \alpha_{\rm S} \\ & \sigma(m_{\rm H} = 125\,{\rm GeV}) = 19.27^{+7.2\%}_{-7.8\%} \,\, ^{+7.5\%}_{-6.9\%} \,\, {\rm pb} \qquad {}^{\rm deF\!\!\!,\,Grazzini} \end{split}$$

- Still sizable uncertainties but great improvement over the last years
- And more precise results possible in near future

Improved Higgs Cross-section @ LHC

- NNLL Resummation 9% at 7 TeV Catani, deF., Grazzini, Nason (2003)
- Two loop EW corrections not negligible ~ 5%
 Aglietti, Bonciani, Degrassi, Vicini (2004)
 Degrassi, Maltoni (2004)
 Actis, Passarino, Sturm, Uccirati (2008)
- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ... Higgs Cross-Section WG

scale $pdf + \alpha_s$ $\sigma(m_H = 125 \, \text{GeV}) = 19.27^{+7.2\%}_{-7.8\%} + 7.5\%_{-6.9\%} \text{ pb}$

HigherLHC data andordersmore observables

- Still sizable uncertainties but great improvement over the last years
- And more precise results possible in near future

deF, Grazzini

Even Higher orders N³LO

▶ 3 loop form factor

Baikov et al (2009) Gehrmann et al (2010) Lee, Smirnov, Smirnov (2010)

- Triple real emission : threshold expansion Anastasiou, Duhr, Dulat, Mistlberger (2013)
- Subtraction terms
 Höschele, Hoff, Pak, Steinhauser, Ueda (2013)
 Buehler, Lazopoulos (2013)
- Missing
 2 loop + single emission
 - I loop + double emission

work in progress

- I loop + double emission
- Possible to reach Soft-Virtual approx. (and beyond) in near future
- Resummation at N³LL : soft contributions Moch, Vermaseren, Vogt (2005)

Conclusions

Amazing work in the last few years — direct consequence of LHC

- PDFs: precision and uncertainties
- NLO : multileg processes and automatic!
- Solution NNLO finally reaching $2 \rightarrow 2$ processes
- Resummation setting NNLL as new standard
- Improvements for NLO+PS and high degree of automation
- + many other issues not discussed (including jet structure)!

Conclusions

Amazing work in the last few years — direct consequence of LHC

- PDFs: precision and uncertainties
- NLO : multileg processes and automatic!
- Solution NNLO finally reaching $2 \rightarrow 2$ processes
- Resummation setting NNLL as new standard
- Improvements for NLO+PS and high degree of automation
- + many other issues not discussed (including jet structure)!

Thanks to Eric Laenen, Sven Moch, Thomas Gehrmann, Aude Gehrmann-De Ridder, Nigel Glover, Stefan Dittmaier, Massimiliano Grazzini and Joey Huston for discussions

Thanks!

Backup Slides

Effect of top cross section in gluon determination

Ratio to NNPDF2.3 NNLO, $\alpha_s = 0.118$

Czakon, Mangano, Mitov, Rojo (2013)

20% reduction in uncertainty at large x (where correlation is most significant)

Effect of prompt photons in gluon determination

moderate reduction of uncertainties in region relevant for Higgs production

D'Enterria, Rojo

need more precise data for photon+jet

Large p_T gauge boson production also relevant

Standard Model Theory for Collider Physics

Comparison to LHC jet data (Atlas 2010) Ball et al (2012)

J.Rojo, DIS2013

Standard Model Theory for Collider Physics

HEP

10⁻¹

First NNLO calculations achieved using different methods

Sector decomposition	Anastasiou, Melnikov, Petriello Czakon Boughezal, Melnikov, Petriello Anastasiou, Herzog, Lazopoulos
q_T - subtraction	Catani, Grazzini Catani, Cieri, deF., Ferrera, Grazzini
Antenna subtraction	Gehrmann-De Ridder, Glover, Gehrmann; + Daleo, Luisoni, Boughezal, Ritzmann, Monni,

•Bottleneck in virtual amplitudes with many legs but do not underestimate numerical/stability issues in real contributions

- •Automation in NNLO still far away
- Matching NNLO with Shower will require increase in logarithmic accuracy of shower (NLL in all emissions?)

Higgs: Improvements over NNLO

QCD corrections dominated by soft and virtual gluon radiation

HEP UBA www.bep.df.cba.ar

Standard Model Theory for Collider Physics

Daniel de Florian