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based on arXiv:1305.6910

EPS-HEP 2013, Stockholm

– p. 1



1. Introduction, Motivations

2. (Variationally) Optimized Perturbation (OPT)

3. Renormalization Group improvement of OPT (RGOPT)

4. Applications in QCD: Fπ/Λ
QCD

MS
, extrapolation to αS ...

5. Summary, conclusions

– p. 2



1. Introduction/Motivations

For mquarks → 0, αS(µ) [equiv. ΛMS ∼ µ e
−

1

β0αS (higher orders )]
is the only fundamental QCD parameter.

αS(mZ) known with impressive accuracy:
PDG 2012 World average: αS(mZ) = .1184± .0007 from

many different determinations (jets, DIS, Z, τ -decay
[previous talks], e+e− → hadrons, lattice,...)

Still, worth to get ΛMS (αS(Q
2)) from further independent

analyses/methods, specially for nf = 2 and/or in infrared
range not perturbatively extrapolable from high scale

Our more general goal: get approximations (of reasonable
accuracy?) to chiral sym. breaking order parameters from a
different (optimized) use of perturbation...(αS a by-product)
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Chiral Symmetry Breaking (χSB ) Order parameters

Usually considered hopeless from standard perturbation:

1. 〈q̄q〉1/3, Fπ,.. ∼ O(ΛQCD) ≃ 100–300 MeV
→ αS (a priori) large → invalidates pert. expansion

2. 〈q̄q〉, Fπ,.. perturbative series ∼ (mq)d
∑

n,p αn
s lnp(mq)

vanish for mq → 0 at any pert. order (trivial chiral limit)

3. More sophisticated arguments e.g. (infrared) renormalon
ambiguities (signature of (factorially) divergent pert.
expansion)

All seems to tell that χSB parameters are intrinsically NP

•Optimized pert. (OPT): appear to circumvent at least 1., 2.,
and may give more clues to pert./NP bridge
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2. (Variationally) Optimized Perturbation (OPT)

LQCD(g,mq) → LQCD(δ
1

2 g,m(1− δ)) (αS ≡ g2/(4π))

δ interpolate between Lfree and Lint

(quark) mass m → arbitrary trial parameter

• Take any standard (renormalized) pert. series, expand in
δ after:

m → m (1− δ); αS → δ αS

then take δ → 1 (to recover original massless theory):

BUT a m-dependence remains at any finite δk-order:
fixed typically by optimization (OPT):

∂
∂m(physical quantity) = 0 for m = mopt(αS) 6= 0

Expect increasingly flatter m-dependence at increasing δ
orders... empirically seen to be the case in various models
But does this ’cheap trick’ always work? and why?

– p. 5



Simpler model’s support + properties

•Convergence proof of this procedure for D = 1 λφ4 oscillator
(cancels large pert. order factorial divergences!) Guida et al ’95

particular case of ’order-dependent mapping’ Seznec+Zinn-Justin ’79

(exponentially fast convergence for ground state energy
E0 = const.λ1/3; good to % level at 2d δ-order)

•In renormalizable QFT, first order consistent with
Hartree-Fock (or large N ) approximation, + results beyond
•+ also produces factorial damping at large perturbative
orders (JLK, Reynaud ’2002 )
(’delay’ infrared renormalon behaviour to higher orders)

•Flexible, Renormalization-compatible, gauge-invariant
applications also at finite temperature (phase transitions
beyond mean field approx in 2D, 3D models, QCD...)
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3. RG improved OPT (RGOPT)

Our main new ingredient (JLK + A. Neveu PRD 81, 125012): Consider a

physical quantity (perturbatively RG invariant), e.g. pole
mass M:
in addition to OPT Eq: ∂

∂ mM (k)(m, g, δ = 1)|m≡m̃ ≡ 0

Require (δ-modified!) series at order δk to satisfy a standard
perturbative RG equation:

RG
(

M (k)(m, g, δ = 1)
)

= 0

with standard RG operator:

RG ≡ µ
d

dµ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m

[β(g) ≡ −2b0g
2 − 2b1g

3 + · · · , γm(g) ≡ γ0g + γ1g
2 + · · · ]
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→ Combined with OPT, RG Eq. takes a reduced form:
[

µ
∂

∂µ
+ β(g)

∂

∂g

]

M (k)(m, g, δ = 1) = 0

Note: OPT+RG completely fix m ≡ m̃ and g ≡ g̃ (two
constraints for two parameters).

• Now ΛMS(g) satisfies by def.
[

µ ∂
∂µ

+ β(g) ∂
∂g

]

ΛMS ≡ 0

consistently at a given pert. order for β(g).
Thus equivalent to:

∂

∂ m

(

Mk(m, g, δ = 1)

ΛMS(g)

)

= 0 ;
∂

∂ g

(

Mk(m, g, δ = 1)

ΛMS(g)

)

= 0
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Pre-QCD guidance: Gross Neveu model

•D = 2 O(2N) GN model shares many properties with D = 4
QCD (asymptotic freedom, chiral symmetry, mass gap,...)

•Mass gap known exactly (for any N ): Mexact(N)
ΛMS

= (4e)
1

2N−2

Γ[1− 1

2N−2
]

(Using D = 2 integrability: Bethe Ansatz) Forgacs et al ’91

Now consider (large N ) massive case:

M(m, g) ≡ m(1 + 2b0g ln
M
µ )

−
γ0
2b0 (generic RG resummed)

= m(1− g ln m
µ + g2(ln m

µ + ln2 m
µ ) + · · · ) (pert. re-expanded)

Fully summed M(m, g) gives right result: M(m → 0) = ΛMS,
never seen from standard perturbation (Mpert(m → 0) → 0)

•But RGOPT gives M = ΛMS at first (and any) δ-order

•At δ2-order (2-loop), RGOPT ∼ 1− 2% from Mexact(anyN)
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4. QCD Application: Pion decay constant Fπ

Consider SU(nf )L × SU(nf )R → SU(nf )L+R for nf
massless quarks. ( nf = 2, nf = 3)
Define/calculate pion decay constant Fπ from

i〈0|TAi
µ(p)A

j
ν(0)|0〉 ≡ δijgµνF

2
π +O(pµpν)

where quark axial current: Ai
µ ≡ q̄γµγ5

τi
2 q

Fπ 6= 0 → Chiral symmetry breaking order parameter

Advantage: Perturbative expression known to high loops
(3-loop Chetyrkin et al ’95; 4-loop Maier et al ’08 ’09, +Maier, Marquard private comm.)

x x x x x x

x x x x
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(Standard) perturbative available information

F 2
π (pert) = Nc

m2

2π2

[

−L+ αS

4π (8L
2 + 4

3L+ 1
6)

+(αS

4π )
2[f30(nf )L

3 + f31(nf )L+ f32(nf )L+ f33(nf )] +O(α3
S)
]

(L ≡ ln m
µ
), nf = 2(3)

Note, finite part (after mass + coupling renormalization) not
separately RG-inv: (i.e. F 2

π as defined mixes with the m2 1

operator)

→ (extra) renormalization by subtraction of the form:
S(m,αS) = m2(s0/αS + s1 + s2αS + ...) where si fixed
requiring RG-inv order by order: s0 = 3

16π3(b0−γ0)
, s1 = ...

But to fix sk needs knowing order k + 1 (L or 1/ǫ coefficient)
At O(α2

S) (3-loop) s3 can be fixed unambiguously from 4-loop
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OPT + RG main features

•OPT: (too) much freedom in the interpolating Lagrangian?:
m → m (1− δ)a

in most previous works: linear case a = 1 for simplicity...

•OPT, RG Eqs. polynomial in (L ≡ ln m
µ , αS):

serious drawback: polynomial Eqs of order k → (too) many
solutions, mostly complex, at increasing δ-orders

•compelling solution: require asymptotic freedom (AF)
compatible solutions (for αS → 0,|L| → ∞): αS ∼ − 1

2b0L
+ · · ·

→ at arbitrary RG order, AF-compatible RG + OPT
branches only appear for a specific universal a value:

m → m (1− δ)
γ0
2b0 ;

Removes spurious solutions of wrong (non AF) behaviour!
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All branches of RG (thick) and OPT(dashed) solutions Re[L ≡ ln m
µ
(g)] to the δ-modified

3rd order (4-loop) perturbation (g = 4παS ). Unique AF compatible sol. = dot

•However beyond lowest order, AF-compatibility and reality
of solutions appear mutually exclusive...
complex solutions: artefact of solving exactly polynomial
Eqs., no physical meaning a priori
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Warm-up example: pure RG approximation

neglect non-RG (non-logarithmic) terms:
F 2
π (RG-1,O(g)) = 3m2

2π2

[

−L+ αS

4π (8L
2 + 4

3L)− ( 1
8π(b0−γ0)αS

− 5
12)

]

→ F 2
π (m → m(1− δ)γ0/(2b0), αS → δαS,O(δ))|δ→1 =

3m2

2π2

[

− 102π
841αS

+ 169
348

− 5
29
L+ αS

4π
(8L2 + 4

3
L)

]

RG+OPT Eqs. have a unique AF-compatible, real solution:
L̃ ≡ ln m̃

µ
= − γ0

2b0
; α̃S = π

2

→ Fπ(O(δ))(m̃, α̃S) = ( 5
8π2 )

1/2m̃ ≃ 0.25ΛMS

•Higher orders +non-RG terms: m̃opt consistently O(ΛMS)

(rather than m ∼ 0): plays the role of a mass gap,
supporting why (modifed) series is more stable:
F opt
π ∼ mopt × (perturbation) ∼ ΛMS × (perturbation)

And OPT stabilizes αopt
S ≃ .5 to more perturbative values
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Recovering real AF-compatible solutions

Perturbative ’deformation’ consistent with RG?:
Ren. scheme change (RSC)!
m → m′(1 +B1g +B2g

2 + · · · ), g → g′(1 + A1g + A2g
2 + · · · )

Require contact solution (thus closest to MS):
∂
∂g

RG(g, L,Bi)
∂
∂L

OPT(g, L,Bi)−
∂
∂L

RG ∂
∂g

OPT ≡ 0
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RSC affects pert. coefficients but property:
FMS
π (m, g; f ij) = F ′

π(m
′, g; f ′

ij(Bi)) + gk+1r(Bi)

→ differences should decrease with pert. order
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Theoretical uncertainties of the method

Beside recovering real solution, RSC offers natural,
reasonably convincing uncertainty estimates:
non-unique RSC prescriptions
→ differences between them taken as uncertainty

nf = 2: F
Λ
(δ2) = 0.213− 0.269 (α̃S = 0.46− 0.64)

F
Λ
(δ3) = 0.2224− 0.2495 (α̃S = 0.35− 0.42)

nf = 3: F0

Λ
(δ2) = 0.236− 0.255 (α̃S = 0.51− 0.57)

F0

Λ
(δ3) = 0.2409− 0.2546 (α̃S = 0.37− 0.42)

+ empirical stability/convergence seen, with
−2b0gL ≃ 1 (cf RG 1rst order) and m̃opt ≃ Λ

– p. 16



Explicit symmetry breaking

•Subtract effect from explicit chiral symmetry breaking from
genuine quark masses mu,md,ms 6= 0:
Fπ

F ∼ 1.073± 0.015 [robust, nf = 2 ChPT + Lattice]

Fπ

F0
∼ 1.172(3)(43) (Lattice MILC collaboration ’10 using NNLO ChPT fits)

But quite different values found by other groups
+ hinted slower convergence of nf = 3 ChPT

(Alternative?: try to implement explicit sym. break. within
OPT? (to be fully independent of ChPT+lattice results):
promising but rather non trivial, work under progress...)
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Combined results with theoretical uncertainties:

Average different RSC +average δ2 and δ3 results:

Λ
nf=2
4 ≃ 359+38

−26 ± 5 MeV

Λ
nf=3
4 ≃ 317+14

−7 ± 13 MeV

To be compared to recent lattice results, e.g.:
•’Schrödinger functional scheme’ (ALPHA coll. Della Morte et al ’12):
ΛMS(nf = 2) = 310± 30 MeV
•Wilson fermions (Göckeler et al ’05)

ΛMS(nf = 2) = 261± 17(stat)± 26(syst) MeV
•Twisted fermions (+NP power corrections) (Blossier et al ’10):
ΛMS(nf = 2) = 330± 23± 22−33 MeV
•static potential (Jansen et al ’12): ΛMS(nf = 2) = 315± 30 MeV

NB lattice result differences seems to come mainly from
quark mass effects and different chiral extrapolations
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Extrapolation to αS at high (perturbative) q2

From nf = 2 to nf = 3 i.e. ’crossing’ ms threshold: deeply
NP, can’t trust perturbative extrapolation.

But we can use directly ΛMS(nf = 3), more trustable

•Standard perturbative extrapolation (3,4-loop with mc, mb

threshold etc):
α
nf+1
S (µ) =

α
nf

S (µ)
(

1− 11
72(

αS

π )2 + (−0.972057 + .0846515nf )(
αS

π )3
)

αS(mZ) = 0.1174+.0010
−.0005 ± .0010± .0005evol

α
nf=3
S (mτ ) = 0.308+.007

−.004 ± .007± .002evol

Alternatively using world average: αS(mZ) = .1184± .0007

as input, predicts Fπ

F0
≃ 1.12+.05

−.025(th,rgopt)± .03αw.a.
S

± .02evol
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5. Summary and Outlook

•OPT gives a simple procedure to go beyond “large N ” in
many models, using only perturbative information.

•Our RGOPT version includes 2 major differences w.r.t.
most previous OPT approaches:
1) OPT+ RG minimizations fix optimized mass m̃ and
coupling g̃ = 4πα̃S

2) requiring AF-compatible solutions fixes the basic
interpolation m → m(1− δ)γ0/(2b0), discarding spurious
solutions, and accelerating convergence.

→ O(10%) accuracy on Fπ/ΛMS using only 2-loop order,
empirical stability exhibited at 3-loop

Our ΛMS, αS values and theoretical accuracies compare
reasonably well with (some) recent other determinations.
•Outlook: implement explicit chiral sym. breaking in OPT
framework, specially for important ms 6= 0 effects for nf = 3
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