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Introduction

• The inclusive hadronic decay width of the τ lepton provides a very clean way to
determine αs at low energies.

• The perturbative QCD contribution is known to O(α4
s ).

• The nonperturbative corrections are predicted to be small.

• The main uncertainty originates from the treatment of higher-order corrections
and improvement of the perturbative series through renormalization group
method.
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QCD description

• The R ratio for the τ decays is defined as:

Rτ,V/A ≡
Γ[τ− → hadrons ντ ]

Γ[τ− → e−νeντ ]
. (1)

• We are interested in the τ decay rate into light u and d quarks, which proceeds
either through a vector or an axialvector current.

• Rτ can also be expressed in the form

Rτ,V/A =
Nc

2
SEW |Vud |

2

[
1 + δ(0) + δ′EW +

∑

D≥2

δ
(D)
ud

]
. (2)

Braaten-Narison-Pich

• SEW = 1.0198± 0.0006 Marciano and Sirlin 1988
δ′
EW

= 0.0010± 0.0010 Braaten and Li 1990
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QCD description

• Our main interest is in the perturbative corrections δ(0) which can be written

δ(0) =
1

2πi

∮

|s|=M2
τ

ds

s

(
1−

s

M2
τ

)3 (
1 +

s

M2
τ

)
D̂pert(a, L), (3)

where a ≡ a(µ2) ≡ αs(µ2)/π and L ≡ ln −s
µ2 and D̂pert(a, L), is the Adler

function series.

• A natural approach is to expand αs(s) in a power series in αs(M2
τ ) and truncate

it where the first unknown βi coefficient appears and put µ2 = M2
τ .

This is called ‘Fixed-Order Perturbation Theory’ (FOPT).

D̂FOPT (s) =
∞∑

n=1

an
n∑

k=1

k cn,k L
k−1 . (4)
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QCD description

• A different approach would be to keep the full solution of the RGE and perform a
numerical integration and choose µ2 = −s. This is called ‘Contour Improved

Perturbation Theory’.
Pivovarov 1991, Le Diberder and Pich 1992

D̂CIPT(αs(−s)/π, 0) =
∞∑

n=1

cn,1

(
αs(−s)

π

)n

. (5)

• In the expansion above, the leading known coefficients cn,1 are

c1,1 = 1, c2,1 = 1.640, c3,1 = 6.371, c4,1 = 49.076,

Baikov, Chetyrkin and Kuhn 2008
c5,1 = 283 estimeted, Beneke and Jamin 2008.

• The β-function was calculated to four loops in the MS-renormalization scheme,
the known coefficients are

β0 = 9/4, β1 = 4, β2 = 10.0599, β3 = 47.228.

Larin, Ritbergen and Vermaseren 1997 and Czakon 2005

Gauhar Abbas, IMSc Chennai, India, 7/27



Outline

1 Introduction

2 Renormalization Group Summed Perturbation Theory

3 Higher order behaviour of RGSPT expansion

4 Determination of αs from RGSPT expansion

5 RGS Non-Power Perturbation Theory

6 Higher order behaviour of RGSNPPT expansions

7 Determination of αs from RGSNPPT expansions

8 Summary

Gauhar Abbas, IMSc Chennai, India, 8/27



Renormalization Group Summed Perturbation Theory

• We use a method based on the explicit summation of all renormalization-group
accessible logarithms.

D̂RGSPT (aL) = a(c1,1 + 2c2,2aL+ 3c3,3a
2L2 + · · · ) + a2(c2,1 + 2c3,2aL+ 3c4,3a

2L2 + · · · )

+ a3(c3,1 + 2c4,2aL+ 3c5,3a
2L2 + · · · ) + · · · =

∞∑

n=1

anDn(aL). (6)

Maxwell and A. Mirjalili 2000
Ahmady, Chishtie, Elias, Fariborz, Fattahi, McKeon, Sherry, Steele 2002, 03

Dn(aL) ≡
∞∑

k=n

(k − n + 1)ck,k−n+1(aL)
k−n. (7)

• The Adler function defined by (4) is scale independent

µ2 d

dµ2

{
D̂FOPT(aL)

}
= 0. (8)

β(a)
∂D̂FOPT

∂a
−

∂D̂FOPT

∂L
= 0. (9)
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• We derive following RGE equation

0 = −
∞∑

n=1

n∑

k=2

k(k − 1)cn,ka
nLk−2

−
(
β0a

2 + β1a
3 + β2a

4 + . . .+ βla
l+2 + . . .

)
×

∞∑

n=1

n∑

k=1

nkcn,ka
n−1Lk−1. (10)

• By extracting the aggregate coefficient of anLn−p one obtains the recursion
formula (n ≥ p)

0 = (n − p + 2)cn,n−p+2 +

p−2∑

ℓ=0

(n − ℓ− 1)βℓcn−ℓ−1,n−p+1. (11)

• Multiplying both sides of (11) by (n− p+ 1)(aL)n−p and summing from n = p to
∞, we obtain a set of first-order linear differential equation for the functions
defined in (7), written as

dDn

d(aL)
+

n−1∑

ℓ=0

βℓ

(
(aL)

d

d(aL)
+ n − ℓ

)
Dn−ℓ = 0, (12)

for n ≥ 1, with the initial conditions Dn(0) = cn,1 which follow from (7). The
solution of the above Eq (12) can be found iteratively in an analytical closed form.
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• The first two solutions are

D1(aL) =
c1,1

y
, D2(aL) =

c2,1

y2
−

β1c1,1 ln y

β0w2
, y = 1 + β0aL. (13)

• The RGSPT expansion of the Adler function is

D̂RGSPT(aL) =

N∑

n=1

anDn(aL), (14)

δ
(0)
RGSPT

=
∞∑

n=1

a(M2
τ )

ndn , (15)

where

dn =
1

2πi

∮

|s|=M2
τ

ds

s

(
1−

s

M2
τ

)3 (
1 +

s

M2
τ

)
Dn(aL). (16)
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δ
(0)
FOPT

δ
(0)
CIPT

δ
(0)
RGSPT

n = 1 0.1082 0.1479 0.1455
n = 2 0.1691 0.1776 0.1797
n = 3 0.2025 0.1898 0.1931
n = 4 0.2199 0.1984 0.2024
n = 5 0.2287 0.2022 0.2056

Table: Predictions of δ(0) by the standard FOPT, CIPT and the RGSPT, for various truncation
orders n using αs = 0.34.

For n = 4, the difference between the results of the RGSPT and the standard FOPT is
0.01754, and the difference from the RGSPT and CIPT is 0.0039, which confirms that
the new expansion gives results close to those of the CIPT.
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Adler function in the complex s-plane
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Figure: Adler function expansions, summed up to the order N = 5, along the circle
s = M2

τ
exp(iθ).
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Higher order behaviour of RGSPT expansion

• The coefficients cn,1 display a factorial growth, i .e. the series has a vanishing
radius of convergence.

• We consider a model proposed by Beneke & Jamin (2008) which predicts
coefficients cn,1 for n > 5.

1 2 3 4 5 6 7 8 9 10
Perturbative order N

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
δ(0

)
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Figure: In the figure we show the dependence on the perturbative order of δ(0) in FOPT, CIPT
and RGSPT in the BJ model. The gray band is the true value obtained from Borel integral in this
model.
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Determination of αs from RGSPT expansion

• We use as input the recent phenomenological value of the pure perturbative
correction to the hadronic τ width

δ
(0)
phen

= 0.2037± 0.0040exp ± 0.0037PC. (17)

Beneke & Jamin 2011, Workshop on Precision Measurements of αs 2011

• With the above phenomenological value of δ(0) and a conservative choice
c5,1 = 283± 283 for the next coefficient and the next terms in the expansion of
the β function, β4 = ±β2

3/β2, we obtain

αs(M
2
τ ) = 0.3378± 0.0046exp ± 0.0042PC

+0.0062
−0.0072(c5,1)

+0.0005
−0.0004(scale)±

+0.000085
−0.000082 (β4). (18)

• Combining errors in quadrature

αs(M
2
τ ) = 0.338± 0.010. (19)

αs(M
2
τ ) = 0.320+0.012

−0.007 FOPT

αs(M
2
τ ) = 0.342± 0.012 CIPT (20)
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RGS Non-Power Perturbation Theory

• We improve the convergence of the RGSPT expansion by the analytical
continuation in the Borel plane. Caprini & Fischer 1999, 2000, 2009, 2011

• The method was applied to FOPT and CIPT by Caprini and Fischer in the past.

• The method cannot be applied in the αs plane but can be applied to the Borel
transform, B(u) of the Adler function in the u plane.

• The Taylor exapnsion of the Borel transform, B(u) converges only in the disk
|u| < 1, limited by the nearest singularity at u = −1.

B(u) =
∞∑

n=0

cn+1,1
un

βn
0 n!

(21)

• The region of convergence can be enlarged if the series in powers of u is replaced
by a series in powers of an “optimal” variable w̃(u) that conformally maps the
holomorphy domain of B(u), i .e. the u-plane with cut along u ≥ 2 and u ≤ −1,
onto the unit disk |w | < 1.

• This also accelerates the convergence rate at all points in the holomorphy
domain. Ciulli & Fischer 1961, Caprini & Fischer 2011
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RGS Non-Power Perturbation Theory

• We introduce the Borel transform of the RGSPT expansion of the Adler function

BRGSPT(u, y) = B(u) +
∞∑

n=0

un

βn
0 n!

n∑

j=1

cj,1dn+1,j (y), (22)

where y = 1 + β0aL.

• We consider the functions

w̃lm(u) =

√
1 + u/l −

√
1− u/m√

1 + u/l +
√

1− u/m
, l ≥ 1,m ≥ 2 (23)

where l ,m are positive integers satisfying l ≥ 1 and m ≥ 2. The function w̃lm(u)
maps the u-plane cut along u ≤ −l and u ≥ m onto the disk |wlm| < 1 in the
plane wlm ≡ w̃lm(u).

• We define further the class of compensating factors of the simple form

Slm(u) =

(
1−

w̃lm(u)

w̃lm(−1)

)γ(l)
1
(
1−

w̃lm(u)

w̃lm(2)

)γ(m)
2

, (24)
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RGS Non-Power Perturbation Theory

• where the exponents are

γ
(l)
1 = γ1(1 + δl1), γ

(m)
2 = γ2(1 + δm2),

γ1 = 1.21, γ2 = 2.58 , (25)

are chosen such that Slm(u) cancel the dominant singularities on the real axis in
the u-plane.

• We further expand the product Slm(u)BRGSPT(u, y) in powers of the variable
w̃lm(u), as

Slm(u)BRGSPT(u, y) =
∑

n≥0

c
(lm)
n,RGSPT

(y) (w̃lm(u))
n. (26)

• We are led to the class of RGSNPPT expansions

D̂RGSNPPT(s) =
∑

n≥0

c
(lm)
n,RGSPT

(y)W
(lm)
n,RGSPT

(s), (27)

where

W
(lm)
n,RGSPT

(s) =
1

β0
PV

∞∫

0

exp

(
−u

β0ãs(−s)

)
(w̃lm(u))

n

Slm(u)
du, (28)

and the coefficients c
(lm)
n,RGS

(y) are defined by the expansion (26).

• The coupling, ãs(−s), entering in the Laplace-Borel integral is the one-loop
solution of the RGE, a novel feature given by RGSPT.
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The convergence of RGSNPPT expansions

• The difference δ(0) − δ
(0)
exact for the model BBJ proposed in BJ model for

αs(M2
τ ) = 0.34 with the standard CIPT, FOPT and RGSPT expansions, and the

new RGSNPPT expansions for various conformal mappings wlm, truncated at

order N. Exact value δ
(0)
exact = 0.2371

N CIPT FOPT RGSPT RGSNPPT w12 RGSNPPT w13 RGSNPPT w1∞ RGSNPPT w23
2 -0.0595 -0.0679 -0.0574 -0.0347 -0.0239 -0.0417 -0.0177
3 -0.0473 -0.0345 -0.0440 -0.0333 -0.0301 -0.0349 -0.0303
4 -0.0388 -0.0171 -0.0347 -0.0089 -0.0142 -0.0067 -0.0132
5 -0.0349 -0.0083 -0.0315 -0.0070 -0.0086 -0.0058 -0.0070
6 -0.0325 -0.0043 -0.0284 -0.0073 -0.0071 -0.0064 -0.0072
7 -0.0325 -0.0029 -0.0298 -0.0059 -0.0057 -0.0056 -0.0044
8 -0.0354 -0.0018 -0.0309 -0.0041 -0.0035 -0.0041 -0.0011
9 -0.0367 -0.0004 -0.0363 -0.0023 -0.0019 -0.0028 -0.0010
10 -0.0529 0.0019 -0.0483 0.0014 -0.0012 -0.0020 0.0004
11 -0.0409 0.0031 -0.0458 0.0036 -0.0008 -0.0016 -0.0009
12 -0.1248 0.0065 -0.1335 0.0031 -0.0006 -0.0015 0.0005
13 0.0258 0.0037 0.0534 0.0026 -0.0004 -0.0015 -0.0005
14 -0.5286 0.0204 -0.7850 0.0018 -0.0003 -0.0015 -0.0011
15 0.8640 -0.0201 1.7734 0.0006 -0.0002 -0.0015 0.0044

16 -3.5991 0.1447 -7.7043 0.0001 −7 · 10−6 -0.0015 -0.0131

17 9.3560 -0.4252 24.8586 -0.0004 4 · 10−6 -0.0014 0.0238
18 -31.76 1.907 -94.26 -0.0013 -0.0001 -0.0013 -0.0310
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Determination of αs from RGSNPPT expansions

• We obtain with RGSNPPT expansions

αs(M
2
τ ) = 0.3189± 0.0034exp ± 0.0031PC

+0.0138
−0.0105(c5,1) ± 0.0010β4

, (29)

after combining the errors in quadrature,

αs(M
2
τ ) = 0.3189 +0.0145

−0.0115 . (30)

• By evolving to the scale of MZ our prediction reads

αs(M
2
Z ) = 0.1184 +0.0018

−0.0015 , (31)
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Summary

• This work is motivated by the well-known discrepancy between the predictions of
αs(M2

τ ) from the standard fixed-order and CIPT expansions.

• The main result is that the summation of leading logarithms provides a
systematic expansion with good convergence properties in the complex plane.

• The results of the new RGSPT expansion are similar to those obtained by the
CIPT expansion.

• The divergent character of the perturbative series is tamed by analytic
continuation in the Borel plane.

• The RGSNPPT expansions lead to prediction for αs which is similar to standard
FOPT (Beneke & Jamin 2008) and CINPPT (Caprini & Fischer 2011).
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