

QCD Physics Potential of CMS

On behalf of the CMS Collaboration Klaus Rabbertz University of Karlsruhe

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

2

راهنمای نقشیه								
	فرهنگسرا	•	بيمارستان	\bigcap	محل استقرار قابلوي راهنما			
	سينما		داروخانه		بزركراه			
	عسجد ـ حسينيه		مراکز آموزشی		خيابان اصلى			
	امامزاده		مراکز پسټی		خيابان فرعى			
	پمپ بنزین		مراكز مخابراتي		كوچه			
P	باركينگ		متل		پارتر بارک ـ فضای سیز			
	حمام عمومي		آثار باستانی		رودخانه و مادی			
B	بانک	۲	موزد		یاسگاه نیروی انتظامی			

- What is QCD?
- Tracks and Hadrons
- Jets

- Photons
- Summary

What is **QCD**?

3

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

1st IPM Meeting on LHC Physics

What is QCD?

First of all ... it is 98% of us (our mass) as we have heard yesterday from Raphael! So we should better know it.

In Formulae:

$$\mathcal{L} = -rac{1}{4} F^A_{lphaeta} F^{lphaeta}_A + \sum_{ ext{flavours}} ar{q}_a (i D - m)_{ab} q_b + \mathcal{L}_{ ext{gauge-fixing}}$$

In Words:

- QCD is the theory of the strong interaction, one of the four fundamental forces of nature, describing especially
 - the hard interactions between the coloured quarks and gluons
 - but also how they bind together to form hadrons.

What is QCD?

Zoomed in:

Klaus Rabbertz

Isfahan, Iran, 24.04.2009 1st IPM Meeting on LHC Physics

6

QCD in CMS

- CMS QCD Group:
 - Everything ... not excluded:
 - New particles, exotics, SUSY (Higgs, Exotica, SUSY) Mostly Background
 - Weak bosons (EWK)
 - Heaviest quarks (Top, B Physics)
 - Very forward topology (Forward Physics)
 - Colliding hadrons other than protons (Heavy lons)
 - Three subdivisions:
 - Low p_τ measurements (tracker, hadrons)
 - High p_T measurements (calorimeter, jets)
 - Measurements with photons (ECAL, photons)

Plus common efforts (PDFs, ...)

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

PDFs, Multijets

Multijets, Hadrons

Jets, PDFs, Evolution

Baseline

QCD at Startup

MinBias

Still enough events/sec left

- Startup with QCD:
 - Not statistically limited o_{jet}(E^{jet} > ²
 - First measurements at multi TeV energy scale
 - Re-establishment of Standard Model, i.e. test extrapolations from Tevatron energies
 - Background to be understood for almost everything
 - Physics commissioning of CMS
 - But be prepared for surprises ...
 Klaus Rabbertz
 Isfahan, Iran, 24.04.2009

Tracks and Hadrons

9

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

First Observations

At low luminosity want to collect "ideal" data meaning exactly one collision per bunch crossing

CMS PAS QCD-07-002

Charged Particle Rapidity Density from Hits

- No tracking, just count clusters in the pixel barrel layers (4, 7 and 10 cm radii)
- Use cluster size to estimate z vertex and to remove hits at high η from non-primary sources
- Correction for loopers, secondaries; systematic uncertainty expected below 10%
 Klaus Rabbertz
 Isfahan, Iran, 24.04.2009
 1st IPM Meeting on LHC Physics

12

CMS Pixel Triplets

Expect:

- ~ 2 million events assuming one month with 1 Hz allocated bandwidth
- **Strategy:**
 - Still "no" tracking, Pixel Triplets
- **CMS pixel detector:**
 - 3 barrel layers (4, 7 and 10 cm radii) and 2 end caps on each side
 - $100 \times 150 \ \mu m^2$ pixels

Hit triplets:

- Use pixel hit triplets instead of pairs, loss of acceptance but lower fake rate
- Reconstructing down to $p_{\tau} = 0.075$ GeV

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

Charged Particle Rapidity Density from Triplets

Model expectations for charged Simulation result from CMS: particles at $|\mathbf{n}| = 0$ vs. \sqrt{s} : Charged particle pseudo-rapidity distribution Pythia: ~ In²(s) Pythia tune DWT → Phojet: ~ In(s) 6 10 —— h' CMS Preliminary **14 TeV 8%** syst. PYTHIA6.214 - tuned simulation PYTHIA6.214 - default iN_{che}/dη at η=0 5 **PHOJET1.12** 8% syst. 8 4 > 2 pp interactions 6 μp/Nb Simulated tracks UA5 and CDF data LHC 2 Will be able to differentiate 1 Assumes trigger efficiencies: 2 ~ SD 60%, DD 70%, ND 99% 0 Non-single diffractive (NSD) 0.5 1.5 2 2.5 3 0 1 10² 10³ 10⁵ 10⁴ n √s (GeV) **CMS PAS QCD-07-001** ATLAS Klaus Rabbertz Isfahan, Iran, 24.04.2009 **1st IPM Meeting on LHC Physics** 14

Technique:

Systematic:

Tracks from pixel triplet seeding T_{i}

 \rightarrow Tracking down to p_T of 75 MeV Klaus Rabbertz Trigger, feed-down, geom. acceptance, alg. efficiency

Isfahan, Iran, 24.04.2009

Events: ~ 2M

1st IPM Meeting on LHC Physics

One month with 1 Hz allocated bandwidth

15

Mix of contributing MinBias and calorimetric jet triggers

Decomposition of trigger contributions to charged particle density in $\Delta \Phi$ plane

Charged particle density in transverse plane vs. leading charged jet p_{T}

20

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

1st IPM Meeting on LHC Physics

Theory Picture

Experimental Picture

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

Generic Jet Analysis

Requires:

- PDFs
- LO & NLO MC
- Det. simulation
- Jet energy scale and resolution
- Calorimeter calibration
- Jet triggers
- Luminosity
- and ...

Data, of course!

Klaus Rabbertz

Jet Analysis Uncertainties

24

- Theoretical Uncertainties (~ in order of importance):
 - PDF Uncertainty
 - pQCD (Scale) Uncertainty
 - Non-perturbative Corrections
 - PDF Parameterization
 - Electroweak Corrections
 - Knowledge of $\alpha_s(M_z)$

•••

Recall: Jet Algorithms used by CMS: → Iterative Cone R = 0.5 → SISCone R = 0.5, 0.7 → k_T D = 0.4, 0.6

- Experimental Uncertainties (~ in order of importance):
 - Jet Energy Scale (JES)
 - Noise Treatment
 - Pile-Up Treatment
 - Luminosity
 - Jet Energy Resolution (JER)
 - Trigger Efficiencies
 - Resolution in Rapidity
 - Resolution in Azimuth
 - Non-Collision Background
 - . . .

- Jet analyses at high transverse momenta:
 - Dijet azimuthal decorrelation
 - Less sensitive to JES, not dependent on luminosity
 - Event shapes
 - Reduced sensitivity to JES & JER, not dependent on luminosity
 - Dijet production ratios & angles
 - Reduced sensitivity to JES, not dependent on luminosity
 - Jet cross section ratios (3-jet / all, R=0.7 / R=0.5, SISCone / kT)
 - Reduced sensitivity to JES, not dependent on luminosity
 - Jet shapes
 - Multi-jet studies
 - Inclusive jet cross section
 - Most complicated, requires all uncertainties to be under control!

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

25

Isfahan, Iran, 24.04.2009

CDF Incl. k_{τ} jets, D=0.7

D0 Incl. MidPoint cone jets, R=0.7 Theory: NLO with CTEQ6.5M

0

|y| < 0.4 (x32)

0.4 < |y| < 0.8 (x16)

0.8 < |y| < 1.2 (x8)

1.2 < |y| < 1.6 (x4)

1.6 < |y| < 2.0 (x2)

600

p_T (GeV)

2.0<|y|<2.4

10⁷ DØ Run II

√s = 1.96 TeV

— NLO pQCD

 10^{-4} +non-perturbative corrections

 10^{-1} L = 0.70 fb⁻¹

 10^{-2} R_{cone} = 0.7

d²σ/dp_Tdy (pb/GeV)

10

10

10

10⁻³

Cross	Section	Rat	ios
01033		Indu	103

Cross section ratios in 6 bins in rapidity y

Isfahan, Iran, 24.04.2009

(1996)

27

Phys.Rev.Lett.

Parton Density Experience

"The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with E_T >200 GeV is significantly higher than current predictions based on $O(\alpha_s^{-3})$ perturbative QCD calculations. ..."

Explained by change in gluon density which then can be constrained by jets! <u>Today</u>:

Much better estimates of PDF uncertainties But beware ...

29

(σ±∆σ_{μfr})/σ

SISCone: Similar result

PDF uncertainties from CTEQ 6.5 At 4 TeV in p_{τ} about -20% to +35%

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

k_⊤, D=0.6, 10 TeV

SISCone: Up to twice as large!

Scale variation of pto0.5 * pand 2 * p1st IPM Meeting on LHC Physics30

Forward Jets and PDFs

Isfahan, Iran, 24.04.2009

19

Possible constraint on PDFs, but

Klaus Rabbertz

- Multiple Parton Interactions (MPI)
- Hadronization & Decays (Lund, Cluster)

Less compensation of these effects for k₊ than for SISCone, not negligible in both cases. Need MC tunes for UE with first LHC data!

Compared 3 different tuned MC:

- Pythia Tune D6T
- Herwig++
- Herwig/Jimmy with settings from ATLAS Take e.g. correction as average of Pythia and half of each, Herwig++ and Herwig/Jimmy, as uncertainty

Isfahan, Iran, 24.04.2009

32

Dominating experimental uncertainty: JES (assumed ± 10% at startup)

More data and improved JES knowledge needed to start constraining PDFs

→ Sensitive to Contact Interactions beyond Tevatron reach (2.7 TeV) with 10 pb⁻¹

Klaus Rabbertz

Jet Energy Resolution

Unsmearing Steps

Motivation

The **observed** cross section is **higher** than the true one due to the falling shape of the spectrum and the finite p_{τ} resolution. More events migrate into a bin of measured p_{τ} than out of it.

Unsmearing steps:

Analytical expression of the p_{τ} resolution

Ansatz function with free parameters to be determined by the data

Fitting the data with the Ansatz function smeared with p_{τ} resolution.

Unsmearing correction calculated bin by bin.

Klaus Rabbertz

36

JER Uncertainty

Good knowledge of the resolution required! A wrong assumption can shift the final spectrum easily by some percent ...

Jet Shapes

Jet shape measurements can be used to discriminate between different underlying event models.

Can be used to distinguish gluon originated jets from quark jets.

Measurement of the average integrated (differential) energy flow inside jets.

Jet shape measurements can be used to test the showering models in the MC generators.

Klaus Rabbertz

Isfahan, Iran, 24.04.2009 1s

Event Shapes

Event Shapes

Some Photons (and Jets)

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

Photons

Photon processes:

- **Direct photon production**
- **Di-photons**

LO

Dominant: > 80%

q

Photon Isolation

Gauge boson production gives important additional information:

- Luminosity measurement
- Detector calibration
- PDFs
- Background for new physics :-(

Important steps:

 Good efficiency including photon conversions
 Proper photon isolation to suppress background

CMS photon study:

- Photon p_{T} spectrum for 1/fb
- Background QCD jets in blue
- After photon isolation cuts
- Improves S/B > 2 orders of magnitude

- CMS is preparing (again) for first LHC data in autumn
- At the LHC we will go beyond Tevatron limits and explore unknown territory in QCD and new physics immediately
- First measurements, even at 900 GeV, will be QCD
- Some tough experimental systematics to deal with, but combining detector parts may help in certain phase space regions (jets+tracks, particle flow)
- Measurements of jets and photons are important tests of QCD and help to
 - calibrate the calorimeters
 - better understand the dominant background to many new physics channels
 - constrain the PDFs
- New measurements are just ahead!

Thanks to all colleagues helping in preparing this presentation!

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

Be prepared for

at the LHC in autumn! Thank you for your attention!

Klaus Rabbertz

Isfahan, Iran, 24.04.2009

Klaus Rabbertz

Isfahan, Iran, 24.04.2009 1st

1st IPM Meeting on LHC Physics 46

CMS Electromagnetic Calorimeter

47

CMS Hadronic Calorimeter

CMS Pixel triplets

Correction	Dep	endend	Corr.	Syst.	
Correction	kine	part	mult	[%]	
Trigger	no	no	yes	15	5
Geometrical acceptance	yes	yes	no	10-20	2
Algorithmic efficiency	yes	yes	no	10-20	2
Multiple track counting	yes	no	no	small	small
Fake track rate	yes	no	yes	small	small
Feed-down	yes	yes	no	2-15	1-2
η , p_T resolution	no	no	no	1-5	1-5
Total	yes	yes	yes		7-9

CMS PAS QCD-07-001

49

Tracking Performance

Comparison of tracking performance for: Ideal conditions

Track reconstruction efficiency

- Start-up (misaligned)
- Alignment Position Error application

Fake rate

Dijets in pp collisions:

 $\Delta \phi$ dijet = $\pi \rightarrow$ Exactly two jets, no further radiation

 $\Delta \phi$ dijet small deviations from $\pi \rightarrow$ Additional soft radiation outside the jets

 $\Delta \phi$ dijet as small as $2\pi/3 \rightarrow$ One additional high-pT jet

 $\Delta \phi$ dijet small – no limit \rightarrow Multiple additional hard jets in the event

Klaus Rabbertz

hep-ex/0409040

PRL 94, 221801 (2005)

Isfahan, Iran, 24.04.2009

Partonic Subprocesses

52

➡ For hh → jets there are seven relevant partonic subprocesses:

1)	gg	\Rightarrow	jets	$\propto H_1(x_1,x_2)$			
2)	qg, ar qg	\Rightarrow	jets	$\propto H_2(x_1,x_2)$			
3)	$gq,gar{q}$	\Rightarrow	jets	$\propto H_3(x_1,x_2)$			
4)	$q_i q_j, ar q_i ar q_j$	\Rightarrow	jets	$\propto H_4(x_1,x_2)$			
5)	$q_i q_i, ar{q_i} ar{q_i}$	\Rightarrow	jets	$\propto H_5(x_1,x_2)$			
6)	$q_i ar q_i, ar q_i q_i$	\Rightarrow	jets	$\propto H_6(x_1,x_2)$			
7)	$q_i ar q_j, ar q_i q_j$	\Rightarrow	jets	$\propto H_7(x_1,x_2)$			
Seven linear combinations H _i of PDFs							

CMS poures unant

Decomposition of the total ppbar, pp \rightarrow jets cross section (NLO) into subprocesses At central rapiditySubprozesse against the scaling variable x_T = 2p_T/ \sqrt{s}

New Physics with Jets:

Contact interactions

Di-jet mass distribution

Resonances

- \star W' & Z' (Grand Unified Theory)
- \star E₆ diquarks (D) (Superstrings & GUT)
- Need E_{CMS} > M

CMS

			Cross Section (pb)					
			M=0.7 TeV		M=2.0 TeV		M=5.0 TeV	
Model	J	Color	$ \eta < 1$	$ \eta < 1.3$	$ \eta < 1$	$ \eta < 1.3$	$ \eta < 1$	$ \eta < 1.3$
q*	1/2	Triplet	7.95×10^{2}	1.27×10^{3}	9.01	1.36×10^{1}	1.82×10^{-2}	2.30×10^{-2}
A,C	1	Octet	3.22×10^{2}	5.21×10^{2}	5.79	8.82	1.55×10^{-2}	2.04×10^{-2}
D	0	Triplet	8.11×10^{1}	1.26×10^{2}	4.20	5.97	4.65×10^{-2}	5.75×10^{-2}
G	2	Singlet	3.57×10^{1}	5.47×10^{1}	1.83×10^{-1}	2.60×10^{-1}	2.64×10^{-4}	3.19×10^{-4}
W'	1	Singlet	1.46×10^{1}	2.37×10^{1}	3.49×10^{-1}	5.31×10^{-1}	8.72×10^{-4}	1.17×10^{-3}
Z'	1	Singlet	8.86	1.44×10^{1}	1.81×10^{-1}	2.77×10^{-1}	5.50×10^{-4}	7.26×10^{-4}

Contact Interaction

New Physics from Dijets

55

Search for deviation from expected event rate:

- QCD from PYTHIA (here) or NLO
- Contact interaction: PYTHIA or LO

Cross section ratios

Search for resonances

Possible signals of q* relative to QCD prediction, visible for < 2 TeV (statistical uncertainty only!)

One means to avoid systematics is by looking into cross section ratios in η

Recent Limits

Tevatron limit on contact interaction scale (qqqq): > 2.4 - 2.7 TeV

Dijet resonance search Excluded (GeV) Excluded (GeV) Resonance Resonance A or C 260 - 1250 D 290 - 630 260 - 1110 w. 280 - 840 Ртя Ζ. q* 260 - 870 320 - 740

Exclusion limits for W' and Z'

Isfahan, Iran, 24.04.2009

Sensitivity to new physics from dijet x section ratios in pseudo-rapidity
 Reduced sensitivity to jet energy scale

CMS PAS SBM-07-001

Klaus Rabbertz

A possibility to look into details of QCD and jet structure!

Norm. transverse energy distribution:

$$r) = \frac{\sum p_{\rm T}(r - \Delta r/2, r + \Delta r/2)}{\Delta r \sum p_{\rm T}^{Jet}}$$

Good reproduction of general properties (central region |η| < 1, matched jets)</th>Jets from generator particlesJets from calorimeter towers

 $\rho($

 ΔS , ϕ -angle b/w P_T's of pairs (rad)

 $\pi^{1.5}$ 2 2.5

52.6 % DP+ 47.4 % Pythia

→ no x-dependente found!

 $\sigma_{\rm eff}(\rm CDF) = II_{\rm I}m$

Π

of

200

100

0

umber

Double-parton-scattering

- four-jet production (\rightarrow AFS, UA2, CDF)
- like-sign W production
- γ + 3-jet production (\rightarrow CDF)
 - Need double-parton component to describe the data

Influence of $\alpha_{s}(M_{7})$

Cross section ratios at central rapidity $\alpha_s(M_z)$ varies from 0.112 to 0.125

With CTEQ6.6 central PDF

PDG Value $\alpha_s(M_z) = 0.1176 \pm 0.0020$ Would lead to 2 to 4% variation

With CTEQ6.6A α_s PDF series

Quotations from Phys. Lett. Vol. 107B, no. 4:

- ... dipole magnet which produces a field of 0.7 T over a volume of 7m x 3.5m x 3.5m ...
- ... yields space points at centimetre intervals on the detected tracks
- ... two short accelerator development periods in October and November 1981 ...
- The events were scanned by physicists on a Megatek display.
- ... was examined independently by all physicists who participated in the scanning. The combined effect of the scanner variations ...