

ISMD 2012

Jet Measurements at LHC and Tevatron

- Motivation
- Accelerators and Detectors
- Jet Algorithms and Jet Calibration
- Inclusive Jets
- Dijet and 3-Jet Mass
- The strong Coupling from Jets
- Outlook

- Motivation
- Accelerators and Detectors
- Jet Algorithms and Jet Calibration
- Inclusive Jets
- Dijet and 3-Jet Mass
- The strong Coupling from Jets
- Outlook
- Multi-jet events, V plus jet production, forward jets, dijet correlations at large rapidity etc. are covered in the next talks

- Motivation
- Accelerators and Detectors
- Jet Algorithms and Jet Calibration
- Inclusive Jets
- Dijet and 3-Jet Mass
- The strong Coupling from Jets
- Outlook
- Multi-jet events, V plus jet production, forward jets, dijet correlations at large rapidity etc. are covered in the next talks
- Another time that one theorist keeps multiple experimenters busy :-)

Abundant production of jets \rightarrow hadron colliders are "jet laboratories" Learn about hard QCD, the proton structure, non-perturbative effects ...

Abundant production of jets \rightarrow hadron colliders are "jet laboratories" ... and the strong coupling alpha_s !

Achievements

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda = 0.5$ GeV while $\Lambda = 0.15$ GeV would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13]. UA2, PLB 118 (1982).

Klaus Rabbertz

Kielce, 18.09.2012

ISMD 2012

Achievements

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda = 0.5$ GeV while $\Lambda = 0.15$ GeV would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13]. UA2, PLB 118 (1982).

... and today !

Klaus Rabbertz

Where to go ...

Kinematic plane of process scale² vs. x

- Huge new phase space accessible in pp collisions at LHC
- Many different final states to examine with high accuracy
- A lot of progress on the theory side, see previous talk
- Check SM predictions at high scales, but watch out for corrections negligible up to now
- Determine the strong coupling and test its running at high scales
- Improve on PDFs and precision of SM predictions
- Any new "features"?

Klaus Rabbertz

Kielce, 18.09.2012

Tevatron and LHC

11

Tevatron: 1985 – 2011 26 years of p anti-p collisions

Run II: E_{cms} =1.96 TeV

LHC: 2009 – present Collisions of p-p, Pb-Pb, and p-Pb (13.9.12)

2009 – 2012: E_{cms} = 0.9, 2.36, 2.76, 7, 8 TeV Run II: record luminosity: 4.3 x 10³² cm⁻²s⁻¹ 2012: lumi approaching 8 x 10³³ cm⁻²s⁻¹

Klaus Rabbertz

Kielce, 18.09.2012

ISMD 2012

Tevatron: 1985 – 2011 26 years of p anti-p collisions

Run II: E_{cms} =1.96 TeV Run II: delivered int. luminosity: 12 / fb

LHC: 2009 – present Collisions of p-p, Pb-Pb, and p-Pb (13.9.12)

2009 – 2012: E_{cms} = 0.9, 2.36, 2.76, 7, 8 TeV 2012: delivered int. luminosity: ~ 15 / fb

CDF and D0

Silicon tracker:Up to $|\eta| = 2.0 - 2.5$ Drift cell tracker:Up to $|\eta| = 1.1$ Calorimetry:Up to $|\eta| = 3.2$ Muon chambers:Up to $|\eta| = 1.5$ Jet energy scale:2 - 3 % prec.

Silicon tracker:Up to $|\eta| = 3.0$ Fiber tracker:Up to $|\eta| = 1.7$ Calorimetry:Up to $|\eta| = 4.0$ Muon chambers:Up to $|\eta| = 2.0$ Jet energy scale:1 - 2% prec.

ATLAS and CMS

Silicon trackers:Up to $|\eta| = 2.5$ Calorimetry:Up to $|\eta| = 4.9$ Muon chambers:Up to $|\eta| = 2.7$ Jet energy scale:1 - 3 % prec.

Silicon trackers:Up to $|\eta| = 2.5$ Calorimetry:Up to $|\eta| = 5.0$ Muon chambers:Up to $|\eta| = 2.4$ Jet energy scale:1 - 3 % prec.

Both detectors are/will be complemented by further instrumentation at larger rapidities.

Jet Analysis Uncertainties

- Experimental Uncertainties (~ in order of importance):
 - Jet Energy Scale (JES)
 - Noise Treatment
 - Pile-Up Treatment
 - Luminosity
 - Jet Energy Resolution (JER)
 - Trigger Efficiencies
 - Resolution in Rapidity
 - Resolution in Azimuth
 - Non-Collision Background

- Theoretical Uncertainties:
 - PDF Uncertainty
 - pQCD (Scale) Dependence
 - Non-perturbative Corrections
 - PDF Parameterization
 - NLO-NLL matching schemes
 - Electroweak Corrections
 - Knowledge of α_s(M_z)

There is a lot to learn here from Comparison to actual measurements!

Kielce, 18.09.2012

Dominant uncertainty for measurements of jet cross sections! Enormous progress at Tevatron, and at LHC in just two years. **QCD** at hadron colliders is becoming precision physics!

D0 from 0.7/fb (2011)

Jet Energy Scale and Pile Up

But: New situation in 2012 at 8 TeV with many pile-up collisions!

ATLAS Z $\rightarrow \mu\mu$ candidate with 25 reconstructed primary vertices:

All Inclusive

Klaus Rabbertz

Kielce, 18.09.2012

П

0.4 < |y| < 0.8 (x16)

0.8 < |y| < 1.2 (x8)1.2 < |y| < 1.6 (x4)

1.6<|y|<2.0 (x2)

2.0<|y|<2.4

 $d^2\sigma$

 $dn_{T}du$

 $\propto \alpha_s^2$

Many new results. **Agreement with** predictions of QCD over many orders of magnitude up to 2 TeV in jet p_T

LHC Data and PDFs

Comparison only of ABM11 PDFs with CMS inclusive jets (2010, 34/pb)

First global fits including LHC data !

ATLAS inclusive jets (2010, 37/pb), ATLAS/LHCb W,Z rap. (2010), CMS W el. Asymmetry (2011) 2 observations:

- slightly smaller uncertainties in NNPDF23
- measurement always lowish at high y

ISMD 2012

21

PDFs and matched Showers

Agreement between NLO POWHEG vs. NLOJet++

POWHEG + matched parton showers ...

Agreement with QCD using diverse PDFs Use to improve PDFs (high x gluon)

Non-perturbative Corrections

Recipe used at Tevatron & LHC:

- take LO parton shower (PS) MC
- derive corr. for non-pert. (NP) effects,
 i.e. multiple parton interactions and hadronization
- \rightarrow assume PS effect small on NLO
- \rightarrow assume NP effects similar for LO,NLO

Observations:

- assumptions fine at central rapidity (not shown here)

- NP corrections larger for R=0.7 than 0.5
- for |y| > 2 PS effects visible

Figures courtesy of S.Dooling, H.Jung, P.Gunnellini, P.Katsas, A.Knutsson

ISMD 2012

Corrections at high pT ?

[nb / GeV]

ISMD 2012

24

- More jet data to come from LHC at very high p₊
- Interesting comparisons to PDFs and extractions of α s to be made
- But need to think about
 - $\propto \alpha \alpha_s^2$ **Electroweak corrections** \rightarrow effects up O(10%) ?
 - top as 6th flavour (NLOJet++ uses only 5)
 - Validity of evolution equations, could be modified by new physics
- Also need urgently NNLO, since only at this precision will alpha_s results be considered in Bethkes world averages!

alpha_s from inclusive Jets

- **CDF:** $\alpha_s(M_Z) = 0.1178 \pm 0.0001 (\text{stat})^{+0.0081}_{-0.0095} (\text{expt.syst})$
- **D0:** $\alpha_s(M_Z) = 0.1161^{+0.0041}_{-0.0048}$ (total)

```
M/S: \alpha_s(M_Z) = 0.1151 \pm 0.0001 (\text{stat}) \pm 0.0047 (\text{expt.syst})^{+0.0080}_{-0.0073} (\text{p}_{\text{T}}, \text{R}, \mu, \text{PDF}, \text{NP})
```

Problem:

Via the PDFs assumes the validity of the running of alpha_s according to the RGE D0 explicitly restricts phase space to where the RGE is already established.

Incl. jet Ratios of 2.76 / 7

Klaus Rabbertz

Kielce, 18.09.2012

ISMD 2012

Just the two of us

Klaus Rabbertz

Kielce, 18.09.2012

DØ, L = 0.7 fb⁻¹

√s = 1.96 TeV

 $R_{cone} = 0.7$

 $a 2.0 < |y|_{max} < 2.4 \ (x10^5)$

▲ $1.6 < |y|_{max} < 2.0 (x10^4)$

 $\Box 1.2 < |y|_{max} < 1.6 (x10^3)$

 $= 0.8 < |y|_{max} < 1.2 (x10^2)$

 $_{\odot} 0.4 < |y|_{max} < 0.8 (x10)^{-1}$

• $|y|_{max} < 0.4$

 $\propto \alpha_s^2$

 $|y|_{max} < 0.5 \ (\times 10^0)$

 $0.5 < |y|_{max} < 1.0 \ (\times 10^1)$

 $1.0 < |y|_{max} < 1.5 (\times 10^2)$

 $1.5 < |y|_{max} < 2.0 (\times 10^{3})^{-1}$ 2.0 < |y|_{max} < 2.5 (× 10^{4})^{-1}

 $d^2\sigma$

 $\overline{dM_{JJ}d[|y|_{max}, y^*]}$

NNPDF2.1⊗ NP Corr.

1000

2000

Many new results. Again agreement with predictions of QCD over many orders of magnitude!

5 10¹⁵ Logd 10¹³

10⁹

10⁷

Chi² Comparison to central PDF

Takes into account correlations in experimental uncertainties Best agreement found with MSWT2008 and NNPDF2.1

Klaus Rabbertz

Kielce, 18.09.2012

ISMD 2012

- Avoid direct dependence on PDFs and the RGE
- Use cross-section ratios!
- ➡ reduces also scale and exp. uncertainties along the way
- eliminates luminosity dependence

D0 proposes a new observable: The average number of neighbouring Jets in an inclusive jet sample:

Depends on 3 variables:

- inclusive jet pT
- distance ΔR (in $\Delta y, \Delta \Phi$) to neighbour
- min. pT to count neighbour jet

D0, arXiv:1207.4957

Klaus Rabbertz

Kielce, 18.09.2012

For other interesting 3-jet quantities see talk by N. Varelas

 $\pm 0.0003(\text{stat}) + ^{+0.0007}_{-0.0009}(\text{exp.}) + ^{+0.0002}_{-0.0001}(\text{NP}) + ^{+0.0010}_{-0.0005}(\text{MSTW}) + ^{+0.0000}_{-0.0024}(\text{PDFset}) + ^{+0.0046}_{-0.0066}(\text{scale})$

400

Strong Coupling α_s

- Hadron colliders are (multi-) jet laboratories
- Jet measurements at hadron colliders are becoming PRECISION PHYSICS
- Must be accompanied by precise theory (Jets at NNLO ...)
- Interplay between strong and electroweak interactions becomes important at the TeV scale
- Data quantity and quality at the LHC open up new regimes in phase space and precision to be exploited
- Many "established facts" need to be carefully checked to avoid missing something NEW

- Hadron colliders are (multi-) jet laboratories
- Jet measurements at hadron colliders are becoming PRECISION PHYSICS
- Must be accompanied by precise theory (Jets at NNLO ...)
- Interplay between strong and electroweak interactions becomes important at the TeV scale
- Data quantity and quality at the LHC open up new regimes in phase space and precision to be exploited
- Many "established facts" need to be carefully checked to avoid missing something NEW

Many thanks to you for your attention and to the organizers for the invitation to speak here!

Klaus Rabbertz

Jet Algorithms at LHC

ATLAS JES 2010

Kielce, 18.09.2012

Inclusive Jets

Jets @ $\sqrt{s} = 8 \text{ TeV}$

• Inclusive jet pT (left) and dijet mass (right) spectrum for *pp* collisions at $\sqrt{s} = 8$ TeV for anti-k_t R=0.4 jets.

• Comparison with $\sqrt{s} = 7$ TeV 2011 data and to Pythia 6 (Pythia 8) MC predictions at $\sqrt{s} = 7$ TeV ($\sqrt{s} = 8$ TeV).

 \rightarrow lower center of mass energy in 2011; therefore, lower cross section.

Bertrand Chapleau

ICHEP 2012, Melbourne, July 4-11 2012

Comparison of measurement to QCD for various PDFs with two jet sizes

D0 Inclusive Jets - PDFs

Klaus Rabbertz

Kielce, 18.09.2012

Non-perturbative Corrections

D0 Dijet Mass - PDFs

Klaus Rabbertz

Kielce, 18.09.2012

ISMD 2012

Dijet Mass ATLAS

D0 Angular Correlation --- Ratios

The ATLAS Detector

Inner Detector (ID) tracker:

- Si pixel and strip + transition rad. tracker
- σ(d₀) = 15μm@20GeV
- $\sigma/p_T \approx 0.05\% p_T \oplus 1\%$

Calorimeter

- Liquid Ar EM Cal, Tile Had.Cal
- EM: σ_E/E = 10%/√E ⊕ 0.7%
- Had: σ_E/E = 50%/√E ⊕ 3%

Muon spectrometer

- Drift tubes, cathode strips: precision tracking +
- RPC, TGC: triggering
- σ/p_T ≈ 2-7%

Magnets

- Solenoid (ID) \rightarrow 2T
- Air toroids (muon) \rightarrow up to 4T

Full coverage for $|\eta|$ <2.5, calorimeter up to $|\eta|$ <5

Klaus Rabbertz

Kielce, 18.09.2012

See also JINST 3 2008 S08003

ISMD 2012

49

The CMS Detector

Inner detector (tracker):

- Si pixel & strip tracker
- σ/p_⊥ ≈ 1-2% (μ at 100 GeV) Calorimeter:
- PbWO4 crystal ECAL, brass/scintillator HCAL
- ELM: $\sigma_{\rm F}/{\rm E}$ = 2.8% / $\sqrt{\rm E}$ + 0.3%
- HAD: $\sigma_{\rm F}/E = 100\% / \sqrt{E} + 5\%$

Muon system:

- Drift tubes, cathode strips, resistive plate chambers
- $\sigma/p \approx 10 50\%$ (muon alone)
- $\approx 0.7 20\%$ (with tracker)

Magnet:

Solenoid \rightarrow 3.8T

See also: PTDR I LHCC-2006-001. JINST 3 2008 S08003

Klaus Rabbertz

Kielce, 18.09.2012

ISMD 2012

IC-SM Problem

Iterativer Konusalgorithmus mit "Aufspaltung und Fusion" (Iterative Cone with Split/Merge, IC-SM) → nicht alle Objekte enden in Jets, z.B. falls kein Startkonus in der Nähe (dark Jets) → kollinear unsicher wegen minimum pT auf Startwerte

 \rightarrow infrarot unsicher ...

Reparaturversuch: MidPoint Cone → Untersuche zus. alle Mittelpunkte zwischen Startkoni → ebenfalls unsicher, fällt aber erst bei komplexerer Topologie auf Erst spät gefunden: Wirklich sicherer Algorithmus Seedless Infrared-Safe Cone (SISCone) → wegen 2 Grössenordnungen grösserem Rechenbedarf kaum benutzt

Jetography, G. Salam, hep-ph/0906.1833

Kielce, 18.09.2012