

Lecture 2/2

Jet Measurements at the LHC

K. Rabbertz

Klaus Rabbertz

Bad Liebenzell, 24.09.2014

Lectures KIT GK

Lecture 1

- A bit of history
- Jet algorithms
- Jet energy calibration
- A first jet analysis:
 - Inclusive jet cross section

Lecture 2

- More cross sections
- Reducing uncertainties
- Ratios and shape comparisons
- Some selected observables
- Strong coupling

2+ Jet Production

Klaus Rabbertz

Bad Liebenzell, 24.09.2014

Lectures KIT GK

Dijet Mass

 $\propto \alpha_s^{\rm o}$

 $\frac{d\sigma_{3jet}}{dM_{3jet}}$

- Sensitive to α_s beyond $2 \rightarrow 2$
- Sensitive to PDFs
- Involves further scale p_{τ,3}

Reducing Uncertainties 1

- Measurements so far: Absolute jet cross sections
 - Inclusive jet pT or dijet and 3-jet mass cross sections:
 - Most complicated, require all uncertainties to be under control!
- Reduction strategy 1: Jet cross section ratios
 - Dijet mass cross section ratios in rapidity new physics ?
 - 3-jet to 2-jet cross section ratio

 \longrightarrow strong coupling α_s

Reducing Uncertainties 2

- Reduction strategy 2: Jet angular measurements

 - Dijet azimuthal decorrelation —> deviations from QCD radiation ?
 - Reduced sensitivity to jet energy scale (JES) or resolution (JER)
- In addition: Normalized distributions
 - Event shapes Test of QCD, MC tuning
 - Less sensitive to JES, not dependent on luminosity

Klaus Rabbertz

Klaus Rabbertz

Inclusive Jet Ratios: 2.76 / 7.0

Bump Hunt

Simple search for new physics: Dijet resonance

Dijet angular distribution

Update for full 2012 luminosity in progress Accounts for electroweak corrections

Jet-pairs in pp collisions:

- $\Delta \phi$ dijet = $\pi \rightarrow$ Exactly 2 jets, no further radiation
- $\Delta \phi$ dijet $\approx \pi \rightarrow$ Additional soft radiation
- $\Delta \phi$ dijet $\approx 2\pi/3 \rightarrow$ At least one additional high-pT jet
- $\Delta \phi_{\text{dilet}}$ $\Delta \varphi_{\text{dijet}}$

2-jet: correlated $\rightarrow \pi$

M. Wobisch

Δφ dijet << 2π/3 Multiple hard jets

multi-jet: "uncorrelated" \rightarrow < π

Azimuthal Decorrelation

Interesting quantity to study for ISR effects (MC tuning) or multijet production

Color Coherence

Study orientation of 3^{rd} jet emission near $2^{nd} \rightarrow$ test interference in parton emissions

 $\beta \sim 0 \rightarrow emission \ between \ jet \ 2 \ and \ beam$

In MC approximated by angular ordering \rightarrow improves description still not perfect

Dijet Flavours

Study of flavour decomposition of both jets in dijet events

3C fraction [%]

1.8

1.6

1.4

1.2

0.8

0.6 0.4

0.2

50

Jet flavour determined via template fits to kinematic properties of secondary vertices inside jets

Templates differentiate between B, C and light (U) quarks

Data stat, uncert, only

Pythia 6.423 Herwig++ 2.4.2 Powheg + Pythia 6.423

0

ATLAS

50

Data 2010, √s= 7 TeV,

100

Some discrepancy for **B-light (U) contribution** at high pT

Data stat. uncert. only
 Pythia 6.423
 Herwig++ 2.4.2
 Powheg + Pythia 6.423

Data 2010. √s= 7 TeV

100

(b)

BC

200 300

Jet p_ [GeV]

Total error

Ldt=39 pb⁻¹

ATLAS

liaht diiets ~ 80%

ATLAS, EPJC73, 2013

Klaus Rabbertz

Bad Liebenzell. 24.09.2014

BU

Ldt=39 pb

Jet p_ [GeV]

300

200

Jet Shapes

Jet substructure: Differentiate among g, q jets and heavy boosted Z', t', ... Here: "Traditional" jet profiles, sensitive to g-, q-jet differences

New ATLAS result investigating the UE in Z+jet events

Jet-radius Ratio

3-Jet Ratios and α_s in hh

antiproto

00000

- Similar as in H1 normalized cross Sections, see later.
- Reduce exp. and scale uncertainties
- Eliminate luminosity dependence
- Avoid direct dependence on PDFs and the RGE

Three observables investigated:

D0: R_{ΔR}

- Average no. of neighbor jets within ΔR in incl. sample
- D0 midpoint cone R=0.7
- Min. jet pT: 50 GeV
- Max. rap.: |y| < 1.0
- Scale: Jet pT
- Data 0.7/fb

CMS: R_{3/2}

- Ratio of inclusive 3- to inclusive 2-jet events
- anti-kT R=0.7
- Min. jet pT: 150 GeV
- Max. rap.: |y| < 2.5
- Scale: Average dijet pT
- Data 2011, 5/fb

ATLAS: N_{3/2}

- Ratio of inclusive 3- to inclusive 2-jets
- anti-kT R=0.6
- Min. jet pT: 40 GeV
- Max. rap.: |y| < 2.8
- Scale: Jet pT
- Data 2010, 36/pb

3- to 2-Jet Ratios

Similarly described by CT10 or MSTW2008 Discrepancies observed with ABM11

 $\begin{aligned} &\alpha_s(M_Z) = 0.1148 \pm 0.0014 \,(\text{exp}) & \alpha_s(M_Z) = 0.111 \pm 0.006 \,(\text{exp}) \\ &\pm 0.0018 \,(\text{PDF}) \pm 0.0050 \,(\text{theory}) & \pm \frac{0.016}{0.003} \,(\text{theory}) \end{aligned} \\ & \text{CMS, EPJC 73 (2013) 2604} & \text{Dominated by theory uncertainty!} & \text{ATLAS-CONF-2013-041 (2013)} \\ & \text{Klaus Rabbertz} & \text{Bad Liebenzell, 24.09.2014} & \text{Lectures KIT GK} & \textbf{21} \end{aligned}$

Solution Determination of α_s **from** $R_{3/2}$ **(NLO)**

CMS, EPJC 73 (2013) 2604

PDF uncertainty: Repeat fit for each NNPDF replica \rightarrow get estimators for μ and σ Scale uncertainty: Repeat fit for six variations of (μ_r , μ_f) \rightarrow get maximal deviation

 $\alpha_s(M_Z) = 0.1148 \pm 0.0014 \,(\text{exp}) \pm 0.0018 \,(\text{PDF}) \pm 0.0050 \,(\text{theory})$

Klaus Rabbertz

CMS a_s Summary

Bad Liebenzell, 24.09.2014

Lectures KIT GK

23

Normalized Multi-Jets in DIS

Klaus Rabbertz

Bad Liebenzell, 24.09.2014

Lectures KIT GK

Hadron Collider Summary

PDG α_s **Summary**

$$\alpha_s(M_Z) = 0.1185 \pm 0.0006$$

Bad Liebenzell, 24.09.2014

PDG2014

- Still new precise measurements from HERA (and Tevatron)!
- Huge new phase space opened up at 7-8 TeV LHC ...
 13 TeV will be another very interesting step, not only for searches
- Data quality makes jet measurements PRECISION PHYSICS
 - \rightarrow better determine gluon PDF, strong coupling, and ... gg \rightarrow H
- Theory definitely entered regime of NLO as Standard
- More precise theory required (NNLO, EW) ...
- ... and under heavy development \rightarrow will be very welcome!
- Mentioned only briefly other exciting topics like jet substructure, or not at all, gap fractions, W+jets, Z+jets
- New ideas for analyses are explored

- Still new precise measurements from HERA (and Tevatron)!
- Huge new phase space opened up at 7-8 TeV LHC ...
 13 TeV will be another very interesting step, not only for searches
- Data quality makes jet measurements PRECISION PHYSICS
 - \rightarrow better determine gluon PDF, strong coupling, and ... gg \rightarrow H
- Theory definitely entered regime of NLO as Standard
- More precise theory required (NNLO, EW) ...
- ... and under heavy development \rightarrow will be very welcome!
- Mentioned only briefly other exciting topics like jet substructure, or not at all, gap fractions, W+jets, Z+jets
- New ideas for analyses are explored

Thank you for your attention!

Backup Slides

PDG Pre-averages

Solution Table of PDF sets with α_s series

1

Base set	Reference(s)	Evol. order	N_f	$\alpha_S(M_Z)$	$\alpha_S(M_Z)$ variations
ABM11	[24]	NLO	5	0.1180	0.110-0.130
ABM11	[24]	NNLO	5	0.1134	0.104-0.120
CT10	[25]	NLO	≤ 5	0.1180	0.112-0.127
CT10	[25]	NNLO	≤ 5	0.1180	0.110-0.130
HERAPDF1.5	[26]	NLO	≤ 5	0.1176	0.114-0.122
HERAPDF1.5	[26]	NNLO	≤ 5	0.1176	0.114-0.122
MSTW2008	[27, 28]	NLO	≤ 5	0.1202	0.110-0.130
MSTW2008	[27, 28]	NNLO	≤ 5	0.1171	0.107 - 0.127
NNPDF2.1	[29]	NLO	≤ 6	0.1190	0.114-0.124
NNPDF2.1	[29]	NNLO	≤ 6	0.1190	0.114-0.124

Outdated figures, anyway no deviations from QCD observed!

Basic description by MC ok

Some deviations visible \rightarrow good for tuning!

Great tools in e+e-, known to NNLO+NLLA resummation \rightarrow precise determination of α_s

Dissertori et al, JHEP0908 (2009).

Also used successfully in ep

In hh collisons:

- only NLO so far

- in praxis, need to restrict rapidity range: $|\eta| < \eta_{max}$

- → central transverse thrust
- \rightarrow spoils resummation

Banfi et al., JHEP06 (2010).

Klaus Rabbertz