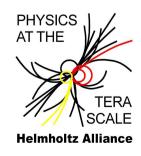


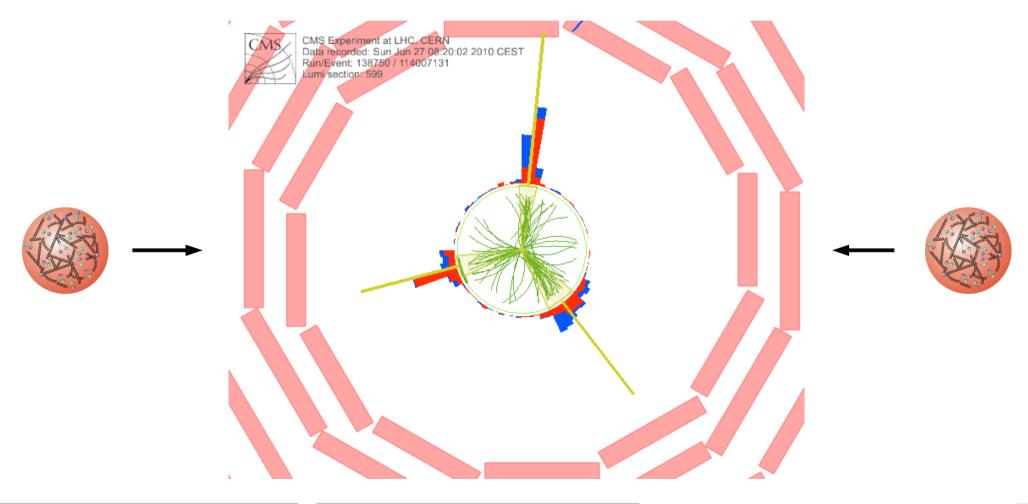
Physics at the Terascale

Extension of fastillo


to arbitrary processes

Daniel Britzger, **Klaus Rabbertz**, Georg Sieber, Fred Stober, Markus Wobisch (DESY, KIT * 3, Louisiana Tech University)

GEFÖRDERT VOM



Outline

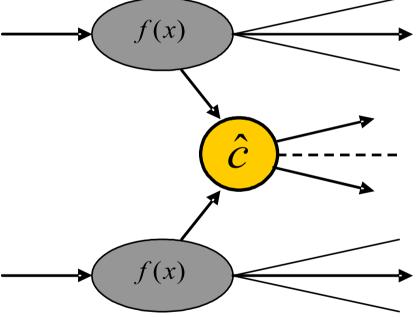
Introduction & History

- Current Developments
- Application & Latest Status
- Outlook

Motivation

- Interpretation of experiment data relies on:
 - Availability of reasonably fast theory calculations
 - Often needed: Repeated computation of same cross section
- Examples for a specific analysis:
 - Estimate accuracy of perturbative QCD (scale uncertainties)
 - Use of various PDFs (AB(K)M, HERAPDF, CTEQ, MSTW, NNPDF, ...)
 - Determine PDF uncertainties (PDF error sets)
 - Use data set in fit of PDFs and/or $\alpha_s(M_z)$
- Sometimes NLO predictions can be computed fast
- But some are very slow, esp. jets, O(1000s CPU h)
- Need procedure for fast repeated computations of NLO cross sections
- Even more so at NNLO when available!

See talk from Nigel!


Jet Cross-Sections

Jet production in hadron-hadron collisions depends on

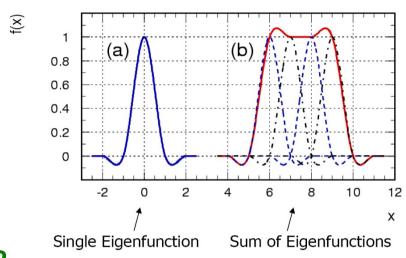
$$\sigma = \sum_{a,b,n} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,b,n}(x_{1}, x_{2}, \mu_{r}, \mu_{f}) \cdot f_{1,a}(x_{1}, \mu_{f}) f_{2,b}(x_{2}, \mu_{f})$$

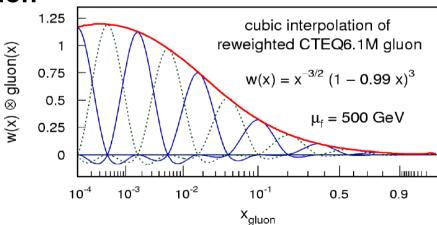
- \triangleright strong coupling α_s to order n
- PDFs of two hadrons f₁, f₂
- Parton flavors a, b
- perturbative coefficients c_{a,b,n}
- renormalization and factorization scales
- Parton momentum fractions x

PDF and α_s are external input Perturbative coefficients are independent from PDF and α_s

Idea: Avoid folding integrals and factorize the PDFs and α_s

The fastNLO concept

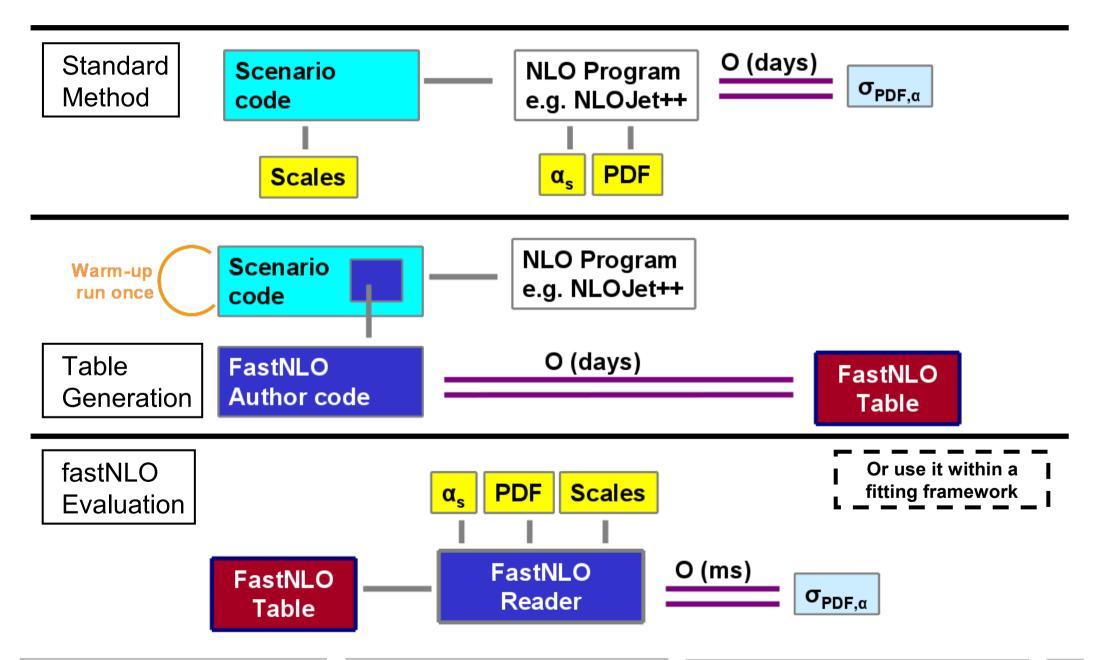



Use interpolation kernel

- Introduce set of n discrete x-nodes, x_i's being equidistant in a function f(x)
- Take set of Eigenfunctions E_i(x) around nodes x_i
- → Interpolation kernels
- Actually a rather old idea, see e.g.
 - C. Pascaud, F. Zomer (Orsay, LAL), LAL-94-42
- → Single PDF is replaced by a linear combination of interpolation kernels

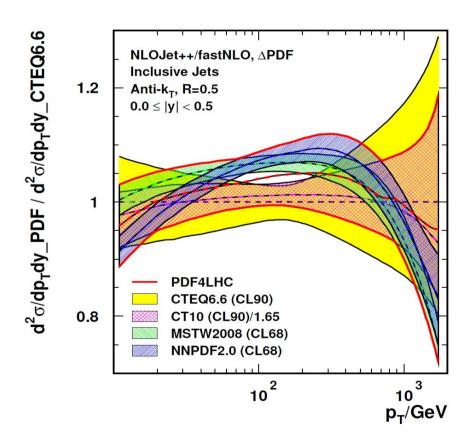
$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$

- → Then the integrals are done only once
- → Afterwards only summation required to change PDF



Store a table with the convolution of the pert. coefficients with the interpolation kernel

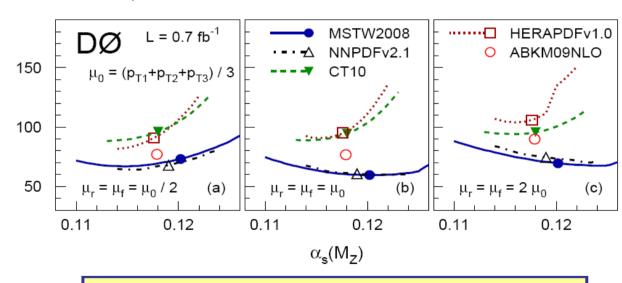
Conceptual Overview



Example Applications

CMS inclusive jets

- ➤ Study of PDF dependence
- > Determination of PDF envelopes
- ➤ PDF-error prediction à la PDF4LHC (not recommended ...)



D0 three-jet invariant mass

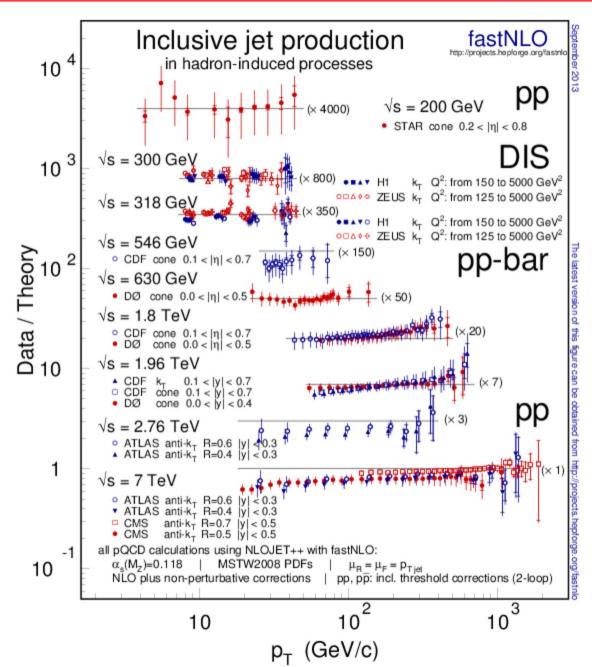
- ➤ Study of PDF dependence
- ➤ Study of scale dependence

$$\mu_{r} = \mu_{f} = (p_{T1} + p_{T1} + p_{T1})/3$$
 $\mu = 2.0 \times \mu_{0}$
 $\mu = 0.5 \times \mu_{0}$

> Study of α_s dependence using α_s dependent PDF sets

3138 repeated NLO calculations

239 repeated NLO calculations


Each rederivation takes fractions of a second! Didn't count any more for the fits presented next ...

Jets Compilation Plot in PDG Book

- Comparison of jet data from
 - STAR at RHIC
 - H1 and ZEUS at HERA
 - CDF and D0 at Tevatron
- Compatible with NLO pQCD
- Updated last month with ATLAS 2010 and CMS 2010 & 2011 published LHC measurements

New in fastNLO Version 2.1

Features of pre-computed fastNLO tables:

- > Automatic adjustment of phase space boundaries
- Flexible # x-nodes for analysis bins
- ➤ Improved interpolation in ren./fact. scales
- > Arbitrary number of dimensions for binning of observable
- > Support for diffractive PDFs

Features of fastNLO reading tools:

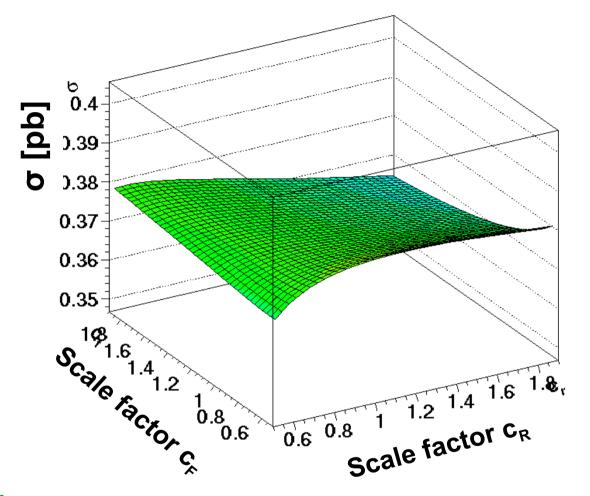
- > Easy to install (autotools)
- Comes as a library linkable from other programs + one example executable
- > Easy implementation of new interfaces
- > Easy to implement in fitting codes and to interface PDFs
- ➤ Independent C++ and Fortran versions
 - agreement at double precision O(10⁻¹⁰)

Latest release fastnlo_reader_2.1.0_1488 including some fixes for threshold corrections in C++ FastNLO Table

FastNLO Reader

Reader_f

Reader_cc


New in v2: Scales

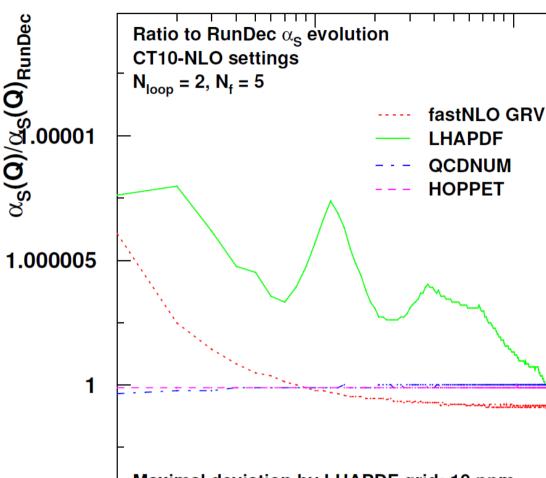
- Scales can be functions of multiple observables
 - ➤ e.g. for DIS jets
 Scale observables are p_T and Q²
- Functional form of combination can be changed
 - > Scales can be $\mu_r^2 = (Q^2 + p_T^2) / 2$ $\mu_r^2 = Q^2$ $\mu_r^2 = p_T^2$ $\mu_r^2 = 0.8 \ Q^2 + 0.3 \ p_T^2 + Q \cdot p_T$
- Independent scale variations with arbitrary factors of μ, and μ, are possible

$$\mu_{R}^{2} = c_{R}^{2} \times (Q^{2} + p_{T}^{2}) / 2$$

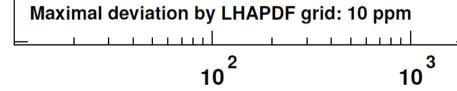
 $\mu_{F}^{2} = c_{F}^{2} \times Q^{2}$

Extensively tested and used in new HERA results to come, not yet exploited for hh tables

More flexibility for studies of scale dependencies



Next fastNLO reader release



One further release imminent:

- with optional Python interface to C++ library
- with optional interface to alternative α_s evolution code from
 - CRunDec (included already since a longer time)
 - QCDNUM (used in HERAFitter)
 - HOPPET (used by CTEQ, NNPDF(?))

0.999995

RunDec, B. Schmidt, M. Steinhauser, CPC183, 2012; K. Chetyrkin, J. Kühn, M. Steinhauser, CPC133, 2000. QCDNUM, M. Botje, CPC182, 2011. HOPPET, G. Salam, J. Rojo, CPC180, 2009. Q (GeV)

fastNLO page at HepForge

New version with plotting tool exists (G. Sieber), needs some optimization

FastNLO is hosted by Hepforge, IPPP Durham

fast pQCD calculations for hadron-induced processes

Home

Documentation

Scenarios

Code

Interactive (maintenance)

Links

General concept

The fastNLO project provides computer code to create and evaluate fast interpolation tables of pre-computed coefficients in perturbation theory for observables in hadron-induced processes.

This allows fast theory predictions of these observables for arbitrary parton distribution functions (of regular shape), renormalization or factorization scale choices, and/or values of alpha_s(Mz) as e.g.

September 20-30, 2013

New code, tables, and plots available. More work is in progress:

A new release of the fastnlo_reader code (1488) is available. Please go to this page for more info and download.

Tevatron inclusive jets tables have been converted to be used with the new format. Please go to this page for an overview and download. There are more tables in the queue.

Update of "all jets plot" for 2013 available including 2011 ATLAS data at 2.76 TeV and 2011 CMS data at 7 TeV. See the Documentation tab.

Available Tables in v2.1: LHC

Changed table numbering scheme, now contains two parts:

- our internal development number fnlxxxx
- the reference number of the publication in inSPIRE, similar as in RIVET
- makes it easy to connect with relevant publication and HepData files

	LHC: pp @ sqrt(s)= 7 TeV		
fnl2332d_l1208923	CMS inclusive jets 2011 (anti-kT R=0.7; pT, y); LO, NLO		
	inSPIRE record HepData at Durham		
fnl2412e_l1208923	CMS dijet mass 2011 (anti-kT R=0.7; Mjj, y_max); LO, NLO		
	inSPIRE record HepData at Durham		
fnl2622f_l1090423	CMS dijet angular 2011 (anti-kT R=0.5; Chi, Mjj); LO, NLO		
	inSPIRE record HepData at Durham (to be uploaded by CMS)		
fnl1016_l1082936	ATLAS inclusive jets 2010 (anti-kT R=0.4; pT, y); LO, NLO, THC-2loop		
	inSPIRE record HepData at Durham		
fnl1015_l1082936	ATLAS inclusive jets 2010 (anti-kT R=0.6; pT, y); LO, NLO, THC-2loop		
	inSPIRE record HepData at Durham		
fnl1014_l902309	CMS inclusive jets 2010 (anti-kT R=0.5; pT, y); LO, NLO, THC-2loop, NPC, Data		
fnl1014_cv21_l902309	CMS inclusive jets 2010 (anti-kT R=0.5; pT, y); LO, NLO; NLOJet++-2.0.1 & fastNLO-1.4.0		
	inSPIRE record HepData at Durham		
fnl2412c_l895742	CMS dijet mass 2010 (anti-kT R=0.7; pT, y_max)		
	inSPIRE record HepData at Durham		

FastNLOCreator v2.2

- ◆ 1. Cross check old v1.4 versus new v2.1 tables ... Done!
- 2. Cross check new reader code in C++ vs. Fortran ... Done!
- 3. Public release of reader code as autotools tarball ... Done!
- ◆ 4. Transform C++ reader code into linkable library ... Done!
- 5. Transform table creation code into linkable library as independent as possible from NLOJet++!
- In progress, first test version exists.
- Make interface available for other N?LO codes.

Basic Interface to other Codes

Generator	Interface	fastNLO
Executable	Weight(s)	Binning
Calculation of coefficients (weights)	x-values	Bingrid
Calculation of observables and scales	Process-ID	Interpolation
Phase space definition		Warmup handling
Event count	Observable(s)	
	Scale(s)	Steerfile must provide correct
Must provide:		Process dependent information
• x-values		 Generator dependent information
weightsprocess IDsObservable and scale values	Optional: pass executable specific information to fastNLO during initialization	

fastNLO library can always be compiled without generator specific code !!

Interface knows about generator specific issues and holds fastNLOCreate instance

Generator has not to be modified!

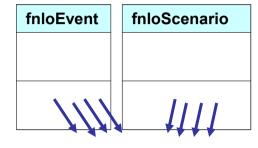
If generator code is complicated: modify code to pass information to interface

Logic of Table Creation

Initialization step

fastNLOCreate

fastNLOCreate(steerfile)


Initialize fastNLOCreate

All (ALL) information is read from steer-file.

Only quantities, which are given by user to 'program-steering' (e.g. LO or NLO run) are passed to the fastNLOCreate class.

fastNLOCreate may also pass steering values to program!

Event loop

fastNLOCreate
Fill(event,scen)

Pass information to fastNLOCreate

For every subprocess/event

End of program

fastNLOCreate
WriteTable()

Write table

(pass number of events to table [event count is left to generator])

Outlook

- Several releases of fastNLO table reading library done. One more to come with optional interfaces to C++ lib via Python and to other α_s evolutions.
- Work on generalized library and interface for table reading AND creation in progress; expect first stable version beginning of next year.
- In particular working on integration of
 - Threshold correction code with Kumar and S. Moch
 - ttbar with M. Guzzi
 - Jets at NNLO with N. Glover, J. Pires, T. Gehrmann, Gehrmann-de Ridder
 - Contact Interaction @ NLO code from J. Gao (he actually implemented his own version of such an interpolation a la fastNLO or APPLGRID)
 - MCFM (available in APPLGRID)

Partonic Subprocesses

- Our test case in 2005/6: Jets @ NLO with NLOJet++
- Don't want to deal with 13 X 13 PDFs

NLOJet++, Z.Nagy, PRD68 2003, PRL88 2002

- For hh → jets seven relevant partonic subprocesses
 - 1) $gg \Rightarrow \text{jets} \propto H_1(x_1, x_2)$
 - $qg, \bar{q}g \Rightarrow \text{jets} \propto H_2(x_1, x_2)$
 - $gq, gar{q} \Rightarrow {
 m jets} \propto H_3(x_1, x_2)$
 - 4) $q_i q_j, \bar{q}_i \bar{q}_j \Rightarrow \text{jets} \propto H_4(x_1, x_2)$
 - 5) $q_i q_i, \bar{q}_i \bar{q}_i \Rightarrow \text{jets} \propto H_5(x_1, x_2)$
 - 6) $q_i \bar{q}_i, \bar{q}_i q_i \Rightarrow \text{jets} \propto H_6(x_1, x_2)$
 - 7) $q_i \bar{q_j}, \bar{q_i} q_j \Rightarrow \text{jets} \propto H_7(x_1, x_2)$
- Need only seven linear combinations H_i of PDFs

Symmetries

In addition, symmetries can be exploited:

$$H_n(x_1, x_2) = H_n(x_2, x_1)$$
 for $n = 1, 4, 5, 6, 7$
 $H_2(x_1, x_2) = H_3(x_2, x_1)$

For hadron anti-hadron collisions, replace:

$$H_4(x_1, x_2) \leftrightarrow H_7(x_1, x_2)$$

 $H_5(x_1, x_2) \leftrightarrow H_6(x_1, x_2)$

- Minimize table size, otherwise number of bins in observable times x₁-, x₂-, μ-nodes, ... can quickly get huge!
- Very relevant in 2005/6 because of limited disk space in mass production of tables, problem to fit table into memory, Fortran limitations
- Cumbersome: Adaptation to be done for each new process
- Today: Partially solved using C++ and memory/disk nowadays
- Could even try using 13x13 in a first step for new processes

Reader Code Download

Choose fastNLO version

Latest

Version 2.1

Previous (deprecated)

Version 1.4

Installation

Installation of distribution package:

Via GNU autotools setup (NOT required for installation), in unpacking directory of the *.tar.gz file do:

./configure --prefix=your_local_directory

(should contain LHAPDF installation, otherwise specify separate path via

--with-lhapdf=path to lhapdf; see also ./configure --help)

make

make install

make check (not yet implemented)

Requirements:

For the installation of the reader package: LHAPDF

Please use at least version 5.8.9, but not version 6 of LHAPDF. The latter has not yet been tested with fastNLO.

For running the executable: fastNLO table, PDF set from LHAPDF

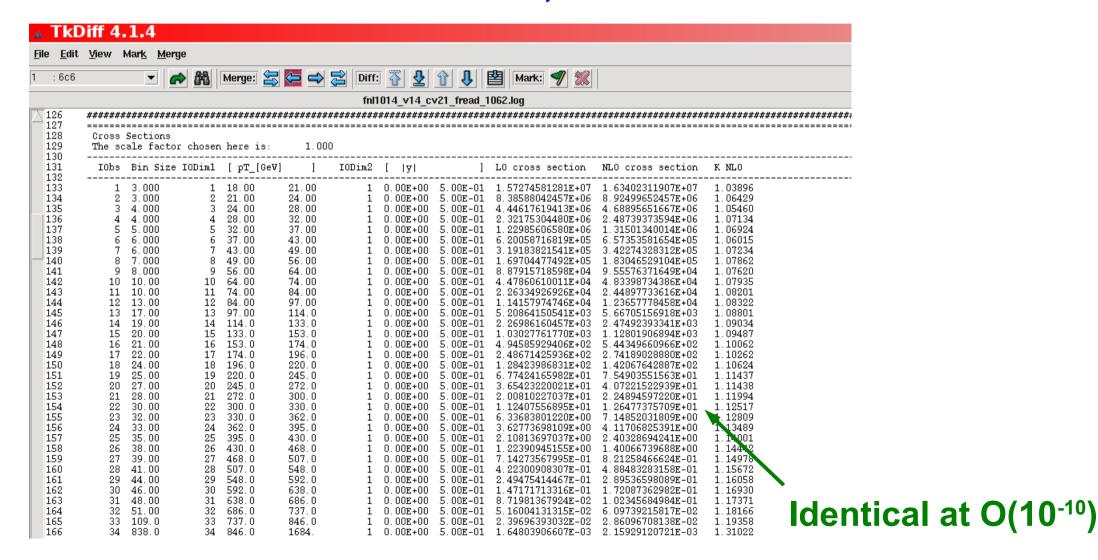
For more information see the README file.

	fastnlo_reader 2.1.0 releases						
1488	ReleaseNotes	ChangeLog	Recommended! Consistent treatment of 1- and 2-loop threshold corrections in C++ & Fortran				
1360	ReleaseNotes	ChangeLog	Workaround for uninitialized top PDF in LHAPDF pre 5.8.9b1 removed				
1354	ReleaseNotes	ChangeLog	Xmas release including experimental support for diffractive PDFs				
1273	ReleaseNotes	ChangeLog	Edition for PDF school 2012 "Proton Structure in the LHC Era" at DESY				
1062	ReleaseNotes	ChangeLog	First public release, presented at Marseille HERAFitter Meeting				

Available Tables in v2.1: Tevatron

Tables with "cv21" refers to tables produced with the old versions of NLOJet++ 2.0.1 and fastNLO v1.4 that have been converted to the new format. More tables to come. Will be replaced at some point by newer tables from scratch.

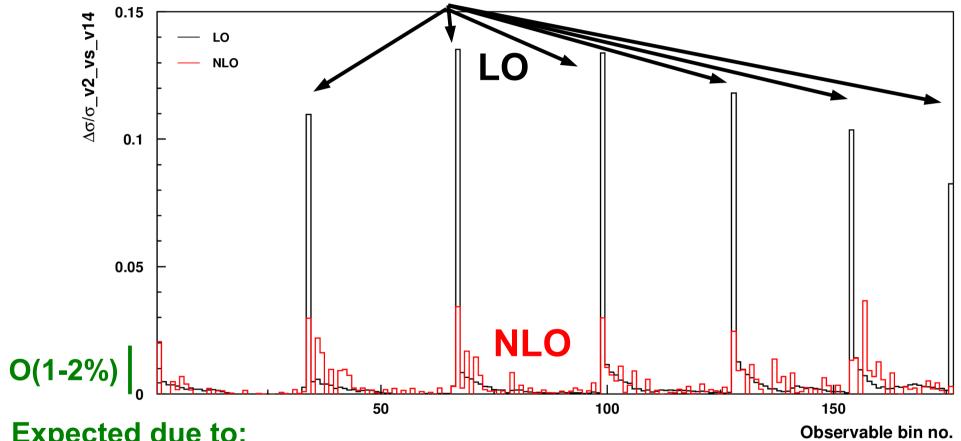
Waiting for new tables for HERA in new flexible scale format.


Tevatron: ppbar @ sqrt(s)= 1.96 TeV						
fnt2007midp_cv21_I790693	CDF inclusive jets 2002-2006 (midpoint cone R=0.7; pT, y); LO, NLO, THC-2loop					
	inSPIRE record	HepData at Durham				
fnt2009midp_cv21_I779574	D0 inclusive jets 2004/5 (midpoint cone R=0.7; pT, y); LO, NLO, THC-2loop					
	inSPIRE record	HepData at Durham				
fnt2004_cv21_I743342	CDF inclusive jets (kT R=0.7; pT, y); LO, NLO, THC-2loop					
	inSPIRE record	HepData at Durham				
Tevatron: ppbar @ sqrt(s) = 1.8 TeV						
fnt1001midp_cv21_I552797	cv21_l552797 CDF inclusive jets 1994/5 (midpoint cone R=0.7; ET, eta); LO, NLO, THC-2loop					
	inSPIRE record	HepData at Durham				
fnt1002midp_cv21_I536691	fnt1002midp_cv21_l536691 D0 inclusive jets 1994/5 (midpoint cone R=0.7; ET, eta); LO, NLO, THC-2loop					
	inSPIRE record	HepData at Durham				

Technical Cross-check

tkdiff between Fortran and C++, ALL differences in color ...!

Klaus Rabbertz



Cross-check v2 vs. v14

Feature known from discussion with CTEQ:

Small scale offset in highest pT XXL bin \rightarrow resolved in v2!

Expected due to:

Stat. independent calculations, NLOJet++ 2.0.1 → NLOJet++ 4.1.3, improved x limits/binning, ...