

LHC MBUE Working Group

First UE Results from CMS at 900 GeV

Klaus Rabbertz, KIT for the CMS Collaboration

Klaus Rabbertz

CERN, 31.05.2010

LHC MBUE Working Group

Chy.Jet#

2

CMS UE measurement at 900 GeV in traditional approach:

- CMS Physics Analysis Summary QCD-10-001 (public)
- Soon to be released improved figures with basically the same content included (small formatting/labelling changes possible!)

CMS UE study at 900 GeV in jet area/median approach:

- Theory paper: "On the characterisation of the underlyin event"; JHEP04(2010)065; M. Cacciari, G. Salam, S. Sapeta
- QCD-10-005 in progress

Traditional Approach R. Field **High P_T Jet Production** MPI, BBR, ISR and FSR **Outgoing Parton** not uniquely differentiable PT(hard) **Initial-State** Radiation **Proton Proton Underlying Event Underlying Event** Leading jet 2π "Away" Region ChgJet #1 Direction "Transverse" **Final-State** $\Delta \phi$ Region Radiation **Outgoing Parto Other "stuff"** "Toward" ø ChgJet#1 but the **Measurement possibility:** hard scatter "Toward" Region **Transverse**² Transverse

 → Charged particle and p_T sum densities in transverse region of leading jet of charged particles

Klaus Rabbertz

CERN, 31.05.2010

LHC MBUE Working Group

"Away"

Balancing jet

3

+1

"Transverse"

Region

"Away" Region

Triggering:

- Beam Pick-up Timing for eXperiments (BPTX) signalling both beams
- Coincidence with signal of both Beam Scintillator Counters (BSC)
- ZeroBias events used for cross-checking efficiencies in data and MC

Event Selection:

Event selection	Data (nb. events)	Data [%]	MC [%]
triggered	255122	100	100
+ 1 real vertex	239038	93.7	92.9
+ 15 cm vertex z window	238977	93.6	92.8
+ 3 tracks associated	230611	90.4	88.7

900 GeV data from December

Klaus Rahhertz	CERN 31.05.2010	LHC MRUE Working Group		
	OLIVIV, 01.00.2010	LITO MIDOL WORKING OTOUP		

Track Selection

Tracks from iterative tracking of combinatorial track finder with loose cuts ...

Track selection	n Data (nb. tracks)	Data [%]	MC [%]	
no requiremer	nt 4826701	100	100	
+ $p_T > 0.5 \text{GeV}/$	c 1986805	41.2	42.0	
$+ \eta < 2.$	5 1950269	98.2	98.1	
$+ \eta <$	2 1588177	81.4	81.1	
$+ d_{xy} / \sigma(d_{xy}) <$	5 1376042	86.6	87.5	
$+ d_z / \sigma(d_z) <$	5 1260249	91.6	94.2	
$- + \sigma(p_T) / p_T < 5^\circ$	/ 1201941	95.4	95.2	
+ high purity algorithr	n 1168530	97.2	97.4	
Tota	al 1168530	24.2	25.5	
Iterative tracking with tight cuts				
Final efficiency ~ 90%, fake rates ~ 2% at central rapidity (from Simulation)				
Klaus Rabbertz	CERN. 31.05.2010	HC MBUE Working Group 5		

Sum pT density versus azimuthal angle with respect to leading object All tracks! Not only Leading track or jet not included! transverse region. 0.3 Scale CMS CMS 0 .25 0. 5 $d^2\Sigma p_T / d\eta d\phi [GeV/c]$ / dn dþ [GeV/c] Transverse Region 0.2 n .15 0.3 Region **Transverse** $d^2 \Sigma p_{T} /$ 0.1 Data 0.9 TeV 0.2 Data 0.9 TeV PYTHIA D6T PYTHIA D6T PYTHIA DW PYTHIA DW PYTHIA P0 charged particles 0.05 PYTHIA P0 charged particles 0 HIA Pro-Q20 (m < 2, p > 0.5 GeV/c) PYTHIA Pro-Q20 (|ŋ| < 2, p > 0.5 GeV/c) 'HIA CW leading track p > 1 GeV/c PYTHIA CW leading track p_ > 2 GeV/c \cap -150 -100 50 -50 100 150 0 -50 150 -150 -100 0 50 100 $\Delta \phi$ [degrees] $\Delta \phi$ [degrees] Klaus Rabbertz CERN. 31.05.2010 LHC MBUE Working Group

Systematic Uncertainties

All results/distributions are UNCORRECTED for detector effects ==>

- Cannot be used directly for MC tuning by people external to CMS
- Provide ratios of MC versus data which can be compared
- Show level of compatibility of physics models with our data
- No uncertainties for detector corrections
- Uncertainties here reflect potential differences in detector or beam condition modelling compared to the real measurement

	Track	Align.	Mat.	Bg.	Trigger	Dead	Beam	Total
	sel.		budget	cont.		ch.	spot	
$d^2 N_{\rm ch}/d\eta d\phi (p_T = 3.5 {\rm GeV}/c)$	0.3	0.3	1.0	0.8	0.6	0.1	0.5	1.8
$d^2\Sigma p_T/d\eta d\phi (p_T = 3.5 \text{GeV}/c)$	0.4	0.3	1.0	0.8	1.1	0.1	0.5	1.8
dN/dN_{ch} ($N_{ch} = 4$)	0.6	0.6	1.2	1.0	1.2	0.2	0.6	2.3
$dN/d\Sigma p_T (\Sigma p_T = 4.5 \text{ GeV}/c)$	0.5	0.2	0.6	0.5	1.2	0.2	0.4	1.6
$dN/dp_T (p_T = 1 \text{ GeV}/c)$	0.8	0.6	1.0	0.8	1.0	0.2	0.5	2.0

Klaus Rabbertz

Charged Particle Density

Charged particle density in transverse region versus event pT scale

Sum pT Density

Sum pT density in transverse region versus event pT scale Note different x axis

Ratio Data/MC 1/4

Charged particle density in transverse region versus event pT scale

Ratio Data/MC 2/4

Multiplicity of charged particles in transverse region

Klaus Rabbertz

Ratio Data/MC 3/4

Sum pT distribution of charged particles in transverse region

Klaus Rabbertz

Ratio Data/MC 4/4

14

PT distribution of charged particles in transverse region

Klaus Rabbertz

Jet Area/Median Approach

Jet Areas:

Jet area is determined with active area clustering

See "The Catchment Area of Jets", JHEP04(2008)005, M. Cacciari et al.

pT infinitesimally small

A uniform grid of extremely soft "ghost particles" is clustered with the physical input particles

- Number of ghosts in a jet determines its area
- Requires a fast infrared & collinear safe jet algorithm GeV 25 20
- 🔹 Cambridge-Aachen, kT, anti-kT
- Empty regions are covered with ghost jets

Figure 4: Active area for the same event as in figure 3, once again clustered with the k_t algorithm and R = 1. Only the areas of the hard jets have been shaded — the pure 'ghost' jets are not shown.

Klaus Rabbertz

CERN, 31.05.2010

LHC MBUE Working Group

CERN, 31.05.2010

Jet Area/Median Approach

LHC MBUE Working Group

16

New Observable:

- ρ = median(pt/area) of all jets in an event
- Determination of leading objects (jets) inherent
- Suited for different event topologies
- 🔸 Looks into complete region in η, Φ
- Has never been used in tuning

Event and Track Selection identical to previous one, only differences:

- pT track > 0.3 GeV instead of 0.5 GeV
- |η| track < 2.3</p>
- |η| track-jet < 1.8</p>

Event Occupancy

Define event occupancy as sum of all jet areas in an event divided by overall considered detector area (defined to be $4 * 2\pi = 8\pi$).

//N_{evts} · dN/dC If occupancy is smaller than 0.5 10⁻¹ ProQ20 DW k_T R=0.6 Charged Particle Jets most of the detector is covered PO √s= 900 GeV CW CW with ghost jets 10⁻² ×2 ---- D6T \rightarrow Median(pt/area) = 0 in this case Adjustment of ρ (discussed with authors) 10^{-3} is necessary Adjusted observable: 10^{-4} $\rho' = \operatorname{median}_{j \in physical jets} \left| \left\{ \frac{p_{T, j}}{A_j} \right\} \right| * C$ 10⁻⁵ $C = \frac{\sum_{j} A_{j}}{A_{j}}$ 0204 0.6 0.8 12 1.0occupancy C Jet areas extending beyond $|\eta|=2$ may takes into account only physical jets give values > 1 with the definition above Klaus Rabbertz CERN. 31.05.2010 LHC MBUE Working Group

Traditional and New

Traditional Method

Jet Area/Median Method

Conclusions & Outlook

- No tune describes all features of the data at 900 GeV
- In the transverse region they predict generally not enough hadronic activity
- Agreement gets better at higher minimal transverse momenta
- The measurements exhibit a preference for higher values of the energy dependence, i.e. $\varepsilon = 0.25$ (as in tune DW) or 0.30 (as in tune CW)
- Lower values of 0.16 as in tune D6T are disfavoured
- The analysis on 7 TeV data as well as corrections for detector effects are ongoing
- An investigation of the UE with the new jet area/median approach is in progress

Acknowledgements

Many thanks for all the dedicated work go to:

The "traditional" UE Group:

D. Acosta, S. Bansal, P. Bartalini, G. Cerati, Y. Chao, D. Dobur, L. Fanó, R. Field, I.K. Furic, K. Kotov, T.N. Kypreos, A. Lucaroni, D. Majumder, K. Mazumdar, L. Mucibello, G. Sguazzoni, M. Zakaria

The "jet area/median" UE Group:

J. Berger, V. Büge, C. Hackstein, M. Heinrich, O. Oberst, A. Oehler, D. Piparo, G. Quast, KR, F. Stober, M. Zeise

Klaus Rabbertz

CERN, 31.05.2010

LHC MBUE Working Group 21

CERN, 31.05.2010

LHC MBUE Working Group

Distribution in $\Delta \Phi$

All tracks! Not only

Sum pT density versus azimuthal angle with respect to leading object

Leading track or jet not included!

Ratio Data/MC 1/4

Charged particle density in transverse region versus event pT scale

Ratio Data/MC 2/4

Multiplicity of charged particles in transverse region

Klaus Rabbertz

Ratio Data/MC 3/4

26

Sum pT distribution of charged particles in transverse region

Klaus Rabbertz

Ratio Data/MC 4/4

27

PT distribution of charged particles in transverse region

Klaus Rabbertz

Ratio Data/MC 5/4

Sum pT density in transverse region versus event pT scale

