

Latest Jets Results from the LHC

Flash Menu

- Motivation
- Accelerators and Detectors
- Jet Algorithms and Calibration
- Inclusive Jets
- Dijets and 3-Jets
- The strong Coupling from Jets
- Outlook

For new results on photons or W/Z bosons plus jets see the dedicated talks this afternoon by R. Lafaye and K. Theofilatos!

Abundant production of jets \rightarrow hadron colliders are "jet laboratories" Learn about hard QCD, the proton structure, non-perturbative effects ...

Abundant production of jets \rightarrow hadron colliders are "jet laboratories" ... and the strong coupling alpha_s !

Where are we?

Kinematic plane of process scale² vs. x

- Huge new phase space accessible in pp collisions at LHC
- Many different final states to examine with high accuracy
- A lot of progress on the theory side
- Check SM predictions at high scales, but watch out for corrections negligible up to now
- Determine the strong coupling and test its running at high scales
- Improve on PDFs and precision of SM predictions
- Any new "features"?

LHC and Experiments

Jet Energy Scale

Dominant experimental uncertainties for jets! Jet Energy Scale (JES) Enormous progress in just three years.

ATLAS from 5/fb (2011)

ATLAS. EPJC 71 2011: arXiv:1112.6297: CONF-2012-053: CONF-2012-063 CMS, JME-10-003; JME-10-010; JINST 6 2011; DP2012-006; DP2012-012 D0, arXiv:1110.3771; D0 prel. 2006

- **Noise Treatment**
- **Pile-Up Treatment**
- Luminosity
- Jet Energy Resolution (JER)

Jet Energy Scale and Pile Up

But: New situation in 2012 at 8 TeV with many pile-up collisions!

ATLAS Z $\rightarrow \mu\mu$ candidate with 25 reconstructed primary vertices: (Record beyond 70!)

All Inclusive

High transverse Momenta

Inclusive Jets

Inclusive Jet Ratios: 0.2 / 0.4

Here: **Ratio with different jet sizes** R = 0.2 and 0.4

ALICE measurement: following proposal from G. Soyez **Emphasizes effects of showering and** hadronization! G. Soyez, PLB698 (2011).

Ratio, R=0.2 / R=0.4 d² ₀/dp₇ dη (mb c/GeV) 10 10 10 c/GeV) σ(R=0.2)/σ(R=0.4 anti-k_⊤, |η|<0.5 anti-k₊, R = 0.2, |η|<0.5 **10**⁻³ ALICE pp $\sqrt{s} = 2.76$ TeV ALICE pp \sqrt{s} = 2.76 TeV: L_{int} = 13.6 nb⁻¹ Systematic uncertainty Systematic uncertainty LO (G. Soyez) NLO (G. Soyez) NLO + Hadronization (G. Soyez) 0.8 NLO (N. Armesto) NLO (G. Soyez) NLO + Hadronization (G. Soyez) 0.6 **10**⁻⁷ NLO/data NLO/data 0.4 1.5 0.2 0.5 2 1.5 30 70 50 60 80 90 100 40 p_{T,jet} (GeV/c) 0.5 20 80 100 120 40 60 p_{T,jet} (GeV/c) ALICE, arXiv:1301.3475 Klaus Rabbertz La Thuile, Italy, 10.03.2013 Moriond QCD 11

Cross section, R=0.2

High pT jets:

Example: Central Transverse Thrust

CMS, PLB699 (2011).

ATLAS: Advantage Pythia & Alpgen

CMS: Advantage Pythia6/8, Herwig++

New: low pT, charged particles: ATLAS: Advantage Pythia6 Z1

Better tuning necessary!

High Masses

Klaus Rabbertz

Again agreement with predictions of QCD over many orders of magnitude!

Ratio wrt CT10 ATLAS Preliminary $L dt = 4.8 \text{ fb}^{-1}$ v* < 0.5 1.5 anti-kT, R=0.7, 7 TeV, 2011 2011 Data 10¹⁰ vs = 7 TeV d²o/dMjd|y|_{max} (pb/GeV) $|y|_{max} < 0.5 \ (\times 10^0)$ CMS anti-k, jets, R = 0.610⁹ $0.5 < |y|_{max} < 1.0 (\times 10^1)^{-1}$ √s = 7 TeV $1.0 < |y|_{max} < 1.5 (\times 10^2)$ -0.5 $1.5 < |y|_{max} < 2.0 (\times 10^3)$ $L = 5.0 \text{ fb}^{-1}$ Data with 3×10⁻¹ 3 4 m₁₂ [TeV] 2 1 $2.0 < |y|_{max}^{max} < 2.5 (\times 10^4)$ statistical error 10⁶ anti- $k_{\tau} R = 0.7$ Systematic Ratio wrt CT10 $0.5 \le y^* < 1.0$ uncertainties 1.5 0^{3} NLOJET++ $(\mu = p_{-} \exp(0.3 y^{*})) \times$ 0.5 Non-pert. corr. 4×10⁻¹ 3 4 m₁₂ [TeV] 1 2 CT10 10⁻³ Ratio wrt CT10 1.0 ≤ y* < 1.5 1.5 μ_= μ_= **p**_^{ave} NNPDF 2.1 NNPDF2.1⊗ NP Corr. 10⁻⁶ HERAPDF 1.5 0.5 2000 200 1000 MSTW2008 M_{ii} (GeV) 6×10⁻¹ 2 3 4 m₁₂ [TeV] 1 CMS, arXiv:1212.6660 (2012) ATLAS, CONF-2012-021 (2012). Klaus Rabbertz 15 La Thuile, Italy, 10.03.2013 Moriond QCD

anti-kT, R=0.6, 7 TeV, 2011

Quantities sensitive to potential deviations from DGLAP evolution at small x Some MC event generators run into problems ... but also BFKL inspired ones! Large y coverage needed, also useful for WBF tagging jets.

Most forward-backward dijet selection

All possible dijet pair distances over leading dijet pair distance

Dijet Flavours

Study of flavour decomposition of both jets in dijet events

α_s at High Scales

Inclusive Jet Ratios: 3 / 2

- Now: Ratio for different multiplicity N_{jet} = 3 over 2
- Avoids direct dependence on PDFs and the RGE of QCD
- reduces other theor. and exp. uncertainties along the way
- eliminates luminosity dependence (normalization)
- Choices of CMS:
 - Ratio of inclusive 3-jet to 2-jet production $\,R\,$
 - Minimal jet pT:
 - Maximal jet rapidity:
 - Average dijet p_T as scale
- Data sample: 2011

$$\mathcal{L}_{\rm int} = 5.0 \, {\rm fb}^{-1}$$

 $p_{\rm T} > 150 \,{\rm GeV}$

Klaus Rabbertz

La Thuile, Italy, 10.03.2013

|y| < 2.5

$$R_{32} = \frac{d\sigma_{3+}/dp_{\rm T}}{d\sigma_{2+}/dp_{\rm T}} \propto \alpha_s(Q)$$

$$Q = \langle p_{\mathrm{T}1,2} \rangle = \frac{p_{\mathrm{T}1} + p_{\mathrm{T}2}}{2}$$

Moriond QCD

Comparison to Theory

Determination of α_s (NLO)

PDF uncertainty: Repeat fit for each NNPDF replica \rightarrow get estimators for μ and σ Scale uncertainty: Repeat fit for six variations of $(\mu_r, \mu_f) \rightarrow$ get maximal deviation $\alpha_s(M_Z) = 0.1148 \pm 0.0014 \,(\text{exp}) \pm 0.0018 \,(\text{PDF}) \pm {}^{0.0050}_{0.0000} \,(\text{scale})$

- Already at 7 TeV LHC opened up new regimes in phase space
- Results for 8 TeV will come soon
- Data quality makes jet measurements PRECISION PHYSICS
- More precise theory required (see next talk)
- New ideas for analyses are explored
- Be prepared for interesting comparisons

- Already at 7 TeV LHC opened up new regimes in phase space
- Results for 8 TeV will come soon
- Data quality makes jet measurements PRECISION PHYSICS
- More precise theory required (see next talk)
- New ideas for analyses are explored
- Be prepared for interesting comparisons

Thank you for your attention and to the Organizers for the opportunity to speak here!

Backup Slides

LHC Aerial View

Klaus Rabbertz

La Thuile, Italy, 10.03.2013

Moriond QCD

Jet Algorithms

Non-perturbative Corrections

Klaus Rabbertz

La Thuile, Italy, 10.03.2013

Moriond QCD

Data comparison to ABM11

- Discrepancies with ABM11 especially below 600 GeV
- Fits of the strong coupling tend versus the upper edge of the available series in alpha_s
 - With ABM11 NNLO PDF set extrapolation beyond α_s = 0.120 required:

 $\alpha_S(M_Z) = 0.1214 \pm 0.0020(\text{exp.})$

- Consistent with ABM11 NLO PDF set: $\alpha_S(M_Z) = 0.1214 \pm 0.0018 (\text{exp.})$
- Much smaller gluon down to 50% at high x at the same time as preference for smaller couplings
- To be further discussed/resolved ...

NNPDF21-NNLO

ABM11-NNLO

 $\alpha_S(M_Z) = 0.106 \dots 0.124$

 $\alpha_S(M_Z) = 0.104 \dots 0.120$

م^ک^۲ 0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

200

MSTW2008-NNLO

CT10-NNLO

 $\alpha_S(M_Z) = 0.110 \dots 0.130$

 $\alpha_S(M_Z) = 0.107 \dots 0.127$

La Thuile, Italy, 10.03.2013

31

- CMS data of 2011
- Anti-kT jet algorithm with R = 0.7
 - Compatible results with R = 0.5 as alternative
- Selection in rapidity y (1 bin):
 - Ensure tracker coverage
 - Two jets leading in p_T must be selected
 - Ensure hard dijet event
- Minimal transverse momentum p_T:
 - Alternative thresholds 50 and 100 GeV checked
 - Alternative relative cut on hardness of 3rd jet tested
- Minimal average 2-jet <p_{T1,2}> (27 bins):
- O(2000) 2-jet ev. incl. O(300) 3-jet events above 1 TeV

 $\mathcal{L}_{\rm int} = 5.0 \, {\rm fb}^{-1}$

|y| < 2.5

 $p_{\rm T} > 150 \,{\rm GeV}$

 $\langle p_{\mathrm{T1,2}} \rangle > 250 \,\mathrm{GeV}$

CMS R₃₂: Analysis Setup

La Thuile, Italy, 10.03.2013

32

CMS R₃₂: Data Treatment

- Efficiency checked separately for incl. 2- and 3-jet events
- Particle-flow technique to reconstruct input objects to jet clustering
- Standard CMS event and jet selection criteria apply
- (η,p_τ)-dependent jet energy correction factors, typically:
- Correction of detector effects using Bayesian iterative unfolding (RooUnfold)
 - Propagation of stat. uncertainties & correlations with MC toy method
 - Cross-checked with SVD unfolding
 - Comparison of directly unfolded ratio R₃₂ versus separate unfolding of inclusive 2- and 3-jet spectra

 $c_{\rm JEC} \approx 1.2 \dots 1.0$ $c_{\rm DET} < 5\%$

 $\epsilon = 100\%$

 $\epsilon > 99\%$

- Jet energy correction, known to 2.0 2.5%:
 - Provided as 16 mutually uncorrelated sources; fully correlated within source; Gaussian behaviour assumed
 - Dominated by absolute scale, followed by high pT extrapolation
- Unfolding uncertainty accounting for:
 - Variation of jet p_τ spectral slopes following differences from
 Pythia6 Z2 (agrees with MadGraph) and Herwig++ 2.3
 - Variation of jet energy resolution (JER)
 - Addition of non-Gaussian tails to JER
- Luminosity (normalization) uncertainty cancels
- No assumptions on bin-to-bin correlations with respect to y necessary, only 1 bin considered
- Statistical uncertainties propagated via unfolding

 $\Delta R/R < 1.0\%$

Moriond QCD

 $\Delta R/R \approx 1.2\%$

CMS R₃₂: Exp. Uncertainties

R_32 Scale Dependence

α from inclusive Jets (NLO)

Attention: Evolution of PDFs from low to high Q assumes the validity of the RGEs ...

α_s World Summary

But: Jet data from hadron colliders not included!Tevatron limit, published last yearJets at NNLO might come this year, see theory talk!Tevatron limit, published last yearA lot of progress by groups aroundLHC from jets starts here ...Th. Gehrmann et al. and N. Glover et al.LHC from jets starts here ...

Klaus Rabbertz

La Thuile, Italy, 10.03.2013

Gehrmann- de Ridder, Gehrmann, Glover, Pires

Moriond QCD

Achievements

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda = 0.5$ GeV while $\Lambda = 0.15$ GeV would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13]. UA2, PLB 118 (1982).

Jets @ $\sqrt{s} = 8 \text{ TeV}$

• Inclusive jet pT (left) and dijet mass (right) spectrum for *pp* collisions at $\sqrt{s} = 8$ TeV for anti-k_t R=0.4 jets.

• Comparison with $\sqrt{s} = 7$ TeV 2011 data and to Pythia 6 (Pythia 8) MC predictions at $\sqrt{s} = 7$ TeV ($\sqrt{s} = 8$ TeV).

 \rightarrow lower center of mass energy in 2011; therefore, lower cross section.

Bertrand Chapleau

ICHEP 2012, Melbourne, July 4-11 2012