

PDF4LHC Meeting

Update on Interpolation Grids for NNLO

A. Huss (ETH Zürich), T. Morgan (IPPP Durham)C. Gwenlan (Oxford), M. Sutton (Sussex)D. Britzger (DESY), K. Rabbertz (KIT)

With support from an IPPP Associateship

K. Rabbertz

NNLOJET (and APPLfast-NNLO)

do / dp⁷ [pb/GeV]

- Semi-automated calculation of cross sections at NNLO from the IPPP, Zurich, ETH and others
 - Gehrmann-De Ridder et al arXiv: 1607.01749
 - See talk from Alex Huss tomorrow
- APPLfast-NNLO
 - Developers from NNLOJET, APPLgrid and fastNLO
 - A single, combined interface for NNLOJET with both APPLgrid and fastNLO

- Many processes implemented in NNLOJET
- Iny processes implemented in NNLOJET processes
 - Concentrating on Z + jets at NNLO for the initial development and proof-of-concept

 $p p \rightarrow Z + \ge 0$ jet NNLOJET √s=8 TeV 10¹ ATLAS Data 10⁰ NNLO NLO 10-1 10-2 10⁻³ 10-4 NNPDF 3.0 $p_{T}^{2} > 20 \text{ GeV}$ $|v_{T}^{2}| < 2.4$ 10⁻⁵ 66 GeV < m_{II} < 116 GeV 10⁻⁶ 1.3 1.2 1.1 1.0 0.9 50 100 500 p7 [GeV] Gehrmann et al., JHEP, 2016, 07, 133.

K. Rabbertz

M. Sutton at QCD@LHC 2016

CERN, Switzerland, 07.03.2017

PDF4LHC Meeting

2

- 1. Preprocessing: Check of interpolation quality
 - Short test jobs to check interpolation settings (& optimise if necessary)
- 2. NNLOJET Warm-up: Vegas integration optimisation
 - 1 long (multi-core) job per process
- 3. APPLgrid/fastNLO Warm-up: Adapt x- and scale-grids to accessed phase space (exact strategy differs between APPLgrid & fastNLO)
- 4. Interpolation grid production:
 - Thousands of parallel jobs
- 5. Postprocessing: Statistical evaluation and combination of all produced grids ...
 - Work in progress: Combination scripts/programs
- 6. Present final results :-)

Step 1: Preprocessing

Step 2: Vegas Integrations

- NNLOJET Warm-up:
 - Must be one job per process type
 - Multi-threading possible

Job Type	# Jobs	Threads / Job	Events / Job	Runtime / Job	Total Runtime
LO	1	16	32 M	0.35 h	0.35 h
NLO-R	1	16	16 M	1.0 h	1.0 h
NLO-V	1	16	16 M	1.0 h	1.0 h
NNLO-RRa	1	32	5 M	17.5 h	17.5 h
NNLO-RRb	1	32	5 M	20.7 h	20.7 h
NNLO-RV	1	16	8 M	22.4 h	22.4 h
NNLO-VV	1	16	8 M	24.6 h	24.6 h
Total	7	-	-	-	87.6 h

Calculated on BwUniCluster at KIT thanks to Baden-Württemberg High Performance Computing (HPC) support

Step 3: Phase Space Exploration

APPLfast Warm-up:

- **NNLOJET** is run without CPU-time expensive weight calculation -
- At least 1 job per process needed to determine phase space limits individually ->
- Grids created and optimised during warm-up (APPLgrid)
- Grids created in production step from optimised x and Q-scale limits (fastNLO) -
- Warm-up can be parallelised, if necessary (fastNLO)
- Presented table used for extensive testing; overkill for normal use

	Job Type	# Jobs	Events / Job	Runtime / Job	# Events	Total Runtime
	LO	5	500 M	12 h	2.5 G	60 h
	NLO-R	5	300 M	18 h	1.5 G	90 h
	NLO-V	5	500 M	13 h	2.5 G	65 h
In this setup	NNLO-RRa	10	50 M	13 h	0.5 G	130 h
most x _{min} limits	NNLO-RRb	10	50 M	15 h	0.5 G	150 h
from LO runs,	NNLO-RV	5	300 M	19 h	1.5 G	90 h
order runs.	NNLO-VV	5	500 M	12 h	2.5 G	60 h
	Total	45			11.5 G	645 h

K. Rabbertz

CERN, Switzerland, 07.03.2017

PDF4LHC Meeting

Typical Sample Productions

<u>NNLOJET Z+jet, no grids:</u>

- NLO-V: 100 jobs x (10 min)
- NLO-R: 100 jobs x (15 min)
- NNLO-VV: 100 jobs x (1 h)
- NNLO-RV: 1000 jobs x (10-20h)
- NNLO-RR: 5000 jobs x (~20h)

Initial performance penalty of grid production vs. NNLOJET alone reduced to roughly a factor of only ~ 2. Depends in detail on physics process and grid setup.

Still gain 100k's of CPU hours for each avoided repetition.

- NNLOJET+Grid DIS jets: each job ~8-16h CPU time
 - LO: 50 jobs (5G events)
 - NLO-V: 40 jobs (2G events)
 - NLO-R: 80 jobs (2G events)
 - NNLO-VV: 100 jobs (1.5G events)
 - NNLO-RV: 5000 jobs (5G events)
 - NNLO-RRa: 10000 jobs (5G events)
 - NNLO-RRb: 2000 jobs (5G events)

K. Rabbertz

CERN, Switzerland, 07.03.2017

PDF4LHC Meeting

NNLOJET + APPLfast

- Massive parallelised computing on Virtual Machines with 24h lifetime
- Example with fastNLO, APPLgrid example in progress

Job Type	# Jobs	Events / Job	Runtime / Job	# Events	Total Output	Total Runtime
LO	10	140 M	20.6 h	1.4 G	24 MB	206 h
NLO-R	200	6 M	19.0 h	1.2 G	1.3 GB	3800 h
NLO-V	200	5 M	21.2 h	1.0 G	1.2 GB	4240 h
NNLO-RRa	5000	60 k	22.5 h	0.3 G	26 GB	112500 h
NNLO-RRb	5000	40 k	20.3 h	0.2 G	27 GB	101500 h
NNLO-RV	1000	200 k	19.8 h	0.2 G	6.4 GB	19800 h
NNLO-VV	300	4 M	20.5 h	1.2 G	2.0 GB	6150 h
Total	11710			5.5 G	64 GB	248196 h

3 times 11710 grids/tables + all NNLOJET output! Final 3 files for analysis are O(10 MB) each.

Calculated on BwForCluster NEMO in Freiburg thanks to Baden-Württemberg High Performance Computing (HPC) support

K. Rabbertz

Production Campaign

Optimal scenario: Finished in two days with 7800 parallel jobs at maximum!

K. Rabbertz

Z+jet approximation test for LO, NLO-R, and NLO-V Agreement at subpermille level

Check using a single interpolation table of the presented production campaign ...

At this level of precision also LHAPDF grids may become a limiting factor.

K. Rabbertz

CERN, Switzerland, 07.03.2017

PDF4LHC Meeting

10

Check NNLO Interpolation

Unweighted Combination

Cross sections from unweighted combination (not final)

- \rightarrow Order of magnitude ok
- \rightarrow Fluctuations still to be dealt with \rightarrow implement for APPLfast

Outlook

- NNLOJET provides NNLO in common interface for:
 - Z incl., Z+jet, W incl., pp jet+dijets, H incl., H+jet, DIS jet+dijets, e+e- 3jets
 - W+jet almost ready; more to come
- APPLgrid+fastNLO interface (NNLO-Bridge) is working
- Numerous adaptations implemented by all sides
- Large-scale productions tested for Z+jet and DIS jet
- Work in progress: Implementation of final combination procedure for interpolation grids
- Looking forward to many new NNLO interpolation grids in 2017

We acknowledge support from an IPPP Associateship and Baden-Württemberg HPC support through BwUniCluster and BwForCluster.

Backup

K. Rabbertz

Bridge to Theory Code

Convenient implementation of fastNLO into any (N)NLO program possible

The Interpolation Concept

Implemented in APPLgrid & fastNLO Use interpolation kernel

- Introduce set of n discrete x-nodes, x_i's being equidistant in a function f(x)
- Take set of Eigenfunctions $E_i(x)$ around nodes x_i
- \rightarrow Interpolation kernels
- Actually a rather old idea, see e.g.

C. Pascaud, F. Zomer (Orsay, LAL), LAL-94-42

→ Single PDF is replaced by a linear combination_{1.25} of interpolation kernels \widehat{x} 1

$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$

- \rightarrow Then the integrals are done only once
- → Afterwards only summation required to change PDF

Tabulate the convolution of the perturbative coefficients with the interpolation kernel

APPLgrid, Carli et al., Eur. Phys. J. C, 2010, 66, 503. fastNLO, Britzger et al., arXiv:0609285, 1208.3641.

