Usage of fastNLO in PDF fits ### Introduction Proton Structure in the LHC Era - School and Workshop 30. September 2014 Daniel Britzger, Georg Sieber, Klaus Rabbertz ### Outline ### **Preparation of Virtual Machine** #### Introduction - Motivation - General concept of fastNLO - Application to Jet analysis at LHC - Outlook #### Tutorial/Hands-on - Download/Installation - Example of table creation using nlojet++ for CMS inclusive jets - Example of table evaluation and use various PDF sets - Representation of fastNLO+nlojet++ results with rivet #### Q&A ## Preparation of Virtual Machine - 1. Download setup script from web - \$> wget http://fastnlo.hepforge.org/setup fastNLO.sh - 2. Source script - \$> source setup_fastNLO.sh 3. Close your screen ## Basics of QCD cross section calculation #### Cross section in hadron-hadron collisions in pQCD $$\sigma = \sum_{a,b,n} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,b,n}(x_{1}, x_{2}, \mu_{r}, \mu_{f}) \cdot f_{1,a}(x_{1}, \mu_{f}) f_{2,b}(x_{2}, \mu_{f})$$ - strong coupling α_s in order n - PDFs of two hadrons f_1, f_2 - Parton flavors a, b - perturbative coefficent $c_{a,b,n}$ - renormalization and factorization scales μ_{r} , μ_{f} - momentum fractions x_1 , x_2 PDF and α_s are external input Perturbative coefficients are independent from PDF and α_s ## Basics of QCD cross section calculation #### Cross section in hadron-hadron collisions in pQCD $$\sigma = \sum_{a,b,n} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,b,n}(x_{1}, x_{2}, \mu_{r}, \mu_{f}) \cdot f_{1,a}(x_{1}, \mu_{f}) f_{2,b}(x_{2}, \mu_{f})$$ ## Application in PDF fits 1. Fit theory to data: $$\sigma_{\text{theo}} \approx \sigma_{\text{exp}}$$ - 2. Free parameters of theory in fit could be any theory parameter - 3. Typically for PDF fits - a) Fix perturbative coefficients - b) $\alpha_s(M_Z)$ could be free parameter or not - c) Fit PDFs: $f_{1,a}$, $f_{2,b}$ Goal: Provide theory coefficients $c_{a,b,n}$ such that they can be used in a (PDF) fit ## A users view on (N)NLO calculations Many (N)NLO calculations take months (or even years) for reasonable precision Recent developments require different tools for e.g. real or virtual contributions #### Requirements for PDF fit - Repeated cross section calculations within O(s) or O(ms) - Standardized format for various processes # Several tools for specific applications available - (N)NLO program standalone - 'N-Tuple' files - Grid techniques Sketch adapted from D. Maitre ## fastNLO working principle - 1. Introduce a set of nodes j ('grids') - 2. Replace PDF functions in (N)NLO code with $$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$ 3. Interpolation kernel must fulfill $$\sum_{i} E_{i}(x) = 1 , \qquad E_{i}(x_{j}) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$ 4. Make use of symmetries for specific process $$\sum_{a,b}^{13\times13} f_{1,a}(x_1,\mu_f) f_{2,b}(x_2,\mu_f) \to \sum_{k}^{7} H_k(x_1,x_2,\mu_f)$$ 5. Store coefficients in a table: \tilde{O} The cross section for usage in PDF fits can be rewritten as a simple sum $$\sigma_{hh}^{Bin} = \sum_{i,j,k,n,m} \alpha_s^n(\mu^{(m)}) \cdot H_k(x_1^{(i)}, x_2^{(i)}, \mu^{(m)}) \cdot \tilde{\sigma}_{k,n}^{(i,j)(m)}$$ ### More details on fastNLO #### Storage of coefficients is more general Scale dependent contributions are stored separately $$\omega(\mu_R, \mu_F) = \omega_0 + \log(\mu_R^2)\omega_R + \log(\mu_F^2)\omega_F + \log^2(\mu_R^2)\omega_{RR} + \log^2(\mu_F^2)\omega_{FF} + \log(\mu_R^2)\log(\mu_F^2)\omega_{RF}$$ log's for NLO additional log's in NNLO - Store weights: w_0 , w_R , w_F , w_{RR} , w_{FF} , w_{RF} for order α_s^{n+2} contributions - This allows for free choice of renormalization and factorization scale without recalculation of coefficients: Two observables can be stored in table which can be employed for calculation of scales #### Automated scan of the grids to phase space So-called 'warm-up' run: More details in hands-on session #### Many other performance and memory size optimizations ## Application procedure I: Table creation Initialize fastNLO class(es) Pass the process specific variables during the 'event loop' to fastNLO - Order does not matter - Many other convenient implementations possible Pass all information to fastNLO Set normalization of the MC integration and write table Minimum implementation: 11 lines of code # Application procedure II: Evaluating tables #### **Evaluating requires interface to PDF library** - LHAPDF - PDF fitting framework - QCDNUM Intermediate step: Merge/Append LO tables with NLO tables Strong coupling evolution can be provided by external program or with shipped code Usage in your program if you want to evaluate table file fnl1014.tab ``` #include <fastNLOLHAPDF.h> [...] // FastNLO example code in c++ for reading CMS incl. // jets (PRL 107 (2011) 132001) with CT10 PDF set fastNLOLHAPDF fnlo("fnl1014.tab","CT10.LHgrid",0); fnlo.PrintCrossSections(); // Print cross section to screen vector<double> cs = fnlo.GetCrossSection(); // Access cross sections for later usage ``` Standalone program(s) available: fnlo-tk-cppread or fnlo-tk-example More options (like scaling variations, α_s settings, etc...) discussed in hands-on session ## Further information ## http://fastnlo.hepforge.org/ FastNLO is hosted by Hepforge, IPPP Durham fast pQCD calculations for hadron-induced processes Home Documentation Scenarios Code Interactive (maintenance) Links #### General concept The fastNLO project provides computer code to create and evaluate fast interpolation tables of pre-computed coefficients in perturbation theory for observables in hadron-induced processes. This allows fast theory predictions of these observables for arbitrary parton distribution functions (of regular shape), renormalization or factorization scale choices, and/or values of alpha_s(Mz) as e.g. needed in PDF fits or in systematic studies. Very time consuming complete recalculations are thus avoided. July 24, 2014 #### Small update of fastNLO Toolkit Prerelease updated with small changes to eliminate some installation hiccups for the optional parts and to remove some additional warnings found by other compilers. The updated package can be downloaded here. July 17, 2014 #### Public prerelease of new fastNLO Toolkit The new fastNLO Toolkit provides a library with all functionality to create, fill, read, and evaluate interpolation tables in the fastNLO format. It comes with a much improved structure that allows other programs to be interfaced to fastNLO. In addition, an example interface and code how to use NLOjet++ with this toolkit is available. Both packages can be downloaded from our code web pages. July 16, 2014 Finally: New calculations for H1 multijets available ## Summary fastNLO is a tool for enabling the usage of time consuming theory prediction in (PDF) fits It is not a NLO program or a MC generator ### For the usage of fastNLO two steps are required - Create table using the fastNLO toolkit code together with an (N)NLO program (fastNLOCreate class) or download tables on fastnlo.hepforge.org - 2. Evaluate table and calculate cross sections using fastNLO stand-alone program or use fastNLO within fitting framework (fastNLOReader class) The usage of fastNLO tables in HERAFitter is explained in other tutorials More information, references and documentation is found at http://fastnlo.hepforge.org ### Outline ### **Preparation of Virtual Machine** #### Introduction - Motivation - General concept of fastNLO - Application to Jet analysis at LHC - Outlook #### Tutorial/Hands-on - Download/Installation - Example of table creation using nlojet++ for CMS inclusive jets - Example of table evaluation and use various PDF sets - Representation of fastNLO+nlojet++ results with rivet #### Q&A