
Application of fastNLO to
NNLO calculations

DIS 2014
XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects

April 30, 2014

Daniel Britzger , Marco Guzzi, Klaus Rabbertz, Georg Sieber, Fred Stober,Markus Wobisch
(DESY, DESY, KIT , KIT, KIT, Louisiana Tech)

2

Motivation

 Interpretation of experimental data relies on
• Availability of reasonably fast theory calculations
• Often needed: Repeated computation of (almost) same cross sections

• Observables, binning, phase space given by experimental data

 Examples for a specific analysis:
• Use of various PDFs (CT, MSTW, NNPDF, …) for data/theory comparison
• Determine PDF uncertainties
• Derivation of scale uncertainties
• Use data set in fit of PDFs and/or αs(MZ)

 Sometimes NLO predictions can be computed fast
But some are very slow

 e.g. jet cross sections, VB+jets, Drell-Yan, …

 Need procedure for fast repeated computations of NL O cross sections
• Use fastNLO (in use by most PDF fitting groups)

3

Basic working principle
 Cross section in hadron-hadron collisions in pQCD

• Many cross section calculations are time consuming (e.g. jets)

• strong coupling αs in order n
• PDFs of two hadrons f1, f2

• Parton flavors a, b

• perturbative coefficent ca,b,n

• renormalization and factorization scales µr, µf

• momentum fractions x1, x2

),(),(),,,()(2,21,121,,
,,

1

0

2

1

0

1 fbfafrnba
nba

r
n
s xfxfxxcdxdx µµµµµασ ⋅⋅= ∑ ∫∫

PDF and αs are external input
Perturbative coefficients are independent from PDF and αs

 Idea: factorize PDF, αs and scale dependence

ĉ

f1(x1)

f2(x2)

4

The fastNLO concept
 Introduce interpolation kernel

• Set of n discrete x-nodes xi's being equidistant in
a function f(x)

• Take set of Eigenfunctions Ei(x) around nodes xi
-> interpolation kernels

 Single PDF is replaced by a linear combination
of interpolation kernels
 Improve interpolation by reweighting PDF

 Scale dependence
• Similar interpolation procedure also for scales
• Interpolation nodes in x and scales are stored

together in look-up table
• Two different observables can be chosen as

scale in one table

)()()()(xExfxf i
i

i
aa ⋅≅ ∑

 Convolution integrals become discrete sums
 => Values of perturbative coefficents can be stored in a table

5

Calculations with fastNLO in NNLO
 Problem

• Scale variations become more difficult in NNLO than in NLO

 Current available implementations for NLO calculations
 Renormalization scale variations

• Scale variations applying RGE
• Use LO matrix elements times nβ0ln(cr) [fastNLO, APPLgrid (EPJ C (2010) 66: 503)]

• Flexible-scale implementation
• Store scale-independent weights: [fastNLO]

 Factorization scale variations
• Calculate LO DGLAP splitting functions using HOPPET [APPLgrid]
• Store coefficients for desired scale factors [fastNLO]
• Flexible-scale implementation [fastNLO]

 Scale variations for NNLO calculations
• a-posteriori renormalization scale variations become more complicated
• NLO splitting functions are needed for factorization scale variations

• Calculations become slow again => Not desired for fast repeated calculations

FFRRFR ωµωµωµµω)log()log(),(0 ++=

6

Flexible-scale implementation in NNLO
 Storage of scale-independent weights enable full sc ale flexibility also in NNLO

• Additional logs in NNLO

• Store weights: w0, wR, wF, wRR, wFF, wRF for order αs
n+2 contributions

 Advantages
• Renormalization and factorization scale can be varied independently and by any factor

• No time-consuming ‘re-calculation’ of splitting functions in NLO necessary

• Only small increase in amount of stored coefficients

 fastNLO implementation
• Two different observables can be used for the scales

• e.g.: HT and pT,max

• or e.g.: pT and |y|

• …

• Any function of those two observables can be used for calculating scales

 ‘Flexible-scale concept‘: Best choice for performant NNLO calculations

RFFFRRFRFR FRFRFR
ωµµωµωµωµωµωµµω)log()log()(log)(log)log()log(),(22222222

0 +++++=

additional log’s in NNLOlog’s for NLO

7

0.5

1

1.5
approx. NNLO, m t=173 ±1 GeV

 d

σ/
dp

T
 (

pp
→

tt– +X
)

(p
b/

G
eV

)

CT10NNLO
MSTW08NNLO
ABM11NNLO

HERAPDF1.5NNLO

NNPDF2.3NNLO

pt
T
 (GeV)

σ/
σ C

T
10

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Application to differential ttbar cross sections in
approx. NNLO

 Application of flexible-scale concept to NNLO
calculations

 Interface to DiffTop code
• DiffTop

• Code for calculation of heavy quark production within
threshold resummation formalism in Mellin space

• See talk by M.Guzzi

• Differential ttbar cross sections in approx. NNLO
• dσ/dpT

• dσ/dy

 Benefit in speed
• NNLO calculation O(days-weeks)
• fastNLO calculation O(<1s)

 fastNLO facilitates study of PDF dependence
 Particularly including PDF uncertainties

• 262 re-calculations are required

preliminary
see talk by M. Guzzi

786 repeated calculations needed
including variation of mt

8

Application to differential ttbar cross sections in
approx. NNLO

 Without recalculating the coefficients
• Variation of the scales within milliseconds

• Variation of αs

• Determination of PDF uncertainties
• Also choice of the scales possible

here: µr/f = f(pT,y,mt)

 Variation of mt

• mt is a third hard scale in this process
• mt is not factorized in the current approach

• Separate fastNLO tables have been computed for
different values of mt

 Fast recomputation of cross sections for a
given measurement enables application of
time-consuming (N)NLO calculations to PDF
and/or αs-fits

• Large gluon uncertainties at high-x can be
reduced using ttbar cross sections

20

40

60

80

100
approx. NNLO × CT10NNLO, m t=173 GeV

 d

σ/
dy

 (
pp

→
tt– +X

)
(1

/G
eV

)

total uncertainty

δmt= 1 GeV

PDF 68%CL

µr=µf var.

αS

yt

re
la

tiv
e

er
ro

r

0.8

0.9

1

1.1

1.2

-3 -2 -1 0 1 2 3

dσ/dy/σ (pp→tt
–
+X) , mt=173 GeV

δmt= 1 GeV
PDF 68%CL
µr=µf var.
αS

approx. NNLO × CT10, total unc.

data CMS, √s=7 TeV

yt

th
eo

ry
/d

at
a,

 d
σ/

dy
/σ

0.8

0.9

1

1.1

1.2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

20

40

60

80

100
approx. NNLO × CT10NNLO, m t=173 GeV

 d

σ/
dy

 (
pp

→
tt– +X

)
(1

/G
eV

)

total uncertainty

δmt= 1 GeV

PDF 68%CL

µr=µf var.

αS

yt

re
la

tiv
e

er
ro

r

0.8

0.9

1

1.1

1.2

-3 -2 -1 0 1 2 3

dσ/dy/σ (pp→tt
–
+X) , mt=173 GeV

δmt= 1 GeV
PDF 68%CL
µr=µf var.
αS

approx. NNLO × CT10, total unc.

data CMS, √s=7 TeV

yt

th
eo

ry
/d

at
a,

 d
σ/

dy
/σ

0.8

0.9

1

1.1

1.2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

9

Accuracy of fastNLO interpolation in NNLO

 Compare cross sections calcuated with DiffTop
standalone compared to fastNLO

• Interpolation accuracy depends on number of nodes
and on chosen interpolation kernel

• Bicubic interpolation kernels used
• Compare contribution order by order separately
• Data probe x-range of 2 ·10-3 < x < 1

• High x-range has more distinct PDF shapes

 fastNLO/DiffTop
• Perfect agreement within numerical precision

reachable (O(10-6))
• NNLO has same accuracy as LO
• With 18 nodes agreement better than 2·10-4

• Accidental ‘interference effects’ with PDF grid may
cause small fluctuations O(2·10-4)
 -> Numerical uncertainty of PDF grids

 fastNLO interpolation does not introduce
numerical biases

Number of x-nodes
0 10 20 30 40 50 60 70 80

fa
st

N
LO

 /
D

iff
T

op

0.9995

1

1.0005

1.001

Interpolation precision LO

 = 10 GeVt
T

p

 = 80 GeVt
T

p

 = 120 GeVt
T

p

 = 600 GeVt
T

p

Number of x-nodes
0 10 20 30 40 50 60 70 80

fa
st

N
LO

 /
D

iff
T

op
0.9995

1

1.0005

1.001

Interpolation precision NNLO

 = 10 GeVt
T

p

 = 80 GeVt
T

p

 = 120 GeVt
T

p

 = 600 GeVt
T

p

Interpolation precision NNLO

MSTW2008nnlo

MSTW2008nnlo

10

New tool: fastNLO toolkit

 What about application of fastNLO to other processe s/programs ?
 Hardly any theoretical limitation of fastNLO concept to pQCD or EW calculations

 Why not used more frequently?

 Interface of fastNLO to theory programs often very complicated…
• Theory codes are not optimized (at all) for fastNLO
• Technical difficulties are mostly limiting factor in usage

 Goal:
Provide simple and flexible code to interface fastN LO to any kind of (N)NLO program

 Newly developed tool: fastNLO Toolkit

11

Application procedure of new ‘fastNLO Toolkit’

 fastNLO needs access to
• Matrix elements before convolution with PDFs
• x-values where PDFs are evaluated
• Observables
• Scale definitions

 Various NLO and NNLO programs have very
different software architecture

 Reasons
• Optimized for efficient calculation
• Straight implementation of math. formulae
• Historically grown codes
• Usage of well established algorithms (e.g. vegas)

 (N)NLO programs often look to non-authors like
different kind of pasta

12

Application procedure of new ‘fastNLO Toolkit’

 fastNLO needs access to
• Matrix elements before convolution with PDFs
• x-values where PDFs are evaluated
• Observables
• Scale definitions

 Various NLO and NNLO programs have very
different software architecture

 Reasons
• Optimized for efficient calculation
• Straight implementation of math. formulae
• Historically grown codes
• Usage of well established algorithms (e.g. vegas)

 (N)NLO programs often look to non-authors like
different kind of pasta

NLO program A

CLO C
NLO

µrPDF

Ob
s1

13

Application procedure of new ‘fastNLO Toolkit’

 fastNLO needs access to
• Matrix elements before convolution with PDFs
• x-values where PDFs are evaluated
• Observables
• Scale definitions

 Various NLO and NNLO programs have very
different software architecture

 Reasons
• Optimized for efficient calculation
• Straight implementation of math. formulae
• Historically grown codes
• Usage of well established algorithms (e.g. vegas)

 (N)NLO programs often look to non-authors like
different kind of pasta

NLO program B

NLO program A

CLO C
NLO

µrPDF

Ob
s1

CLO

CNLO

µr

PDF

Obs1

14

Application procedure of new ‘fastNLO Toolkit’

 fastNLO needs access to
• Matrix elements before convolution with PDFs
• x-values where PDFs are evaluated
• Observables
• Scale definitions

 Various NLO and NNLO programs have very
different software architecture

 Reasons
• Optimized for efficient calculation
• Straight implementation of math. formulae
• Historically grown codes
• Usage of well established algorithms (e.g. vegas)

 (N)NLO programs often look to non-authors like
different kind of pasta

NLO program B

NLO program A

CLO C
NLO

µrPDF

Ob
s1

CLO

CNLO

µr

PDF

Obs1

 Think about a general interface to any kind of theoretical program

15

Application procedure of new ‘fastNLO Toolkit’

(N)NLO Program

M
C
 I
n
te
g
ra
ti
o
n

Program Start

Program End

(N)NLO Result

16

Application procedure of new ‘fastNLO Toolkit’

 Initialize fastNLO class(es)
(N)NLO Program

fastNLOCreate fnlo(„steering.str“);
fnlo.SetOrderOfCalculation(int order);

M
C
 I
n
te
g
ra
ti
o
n

Program Start

Program End

(N)NLO Result

17

Application procedure of new ‘fastNLO Toolkit’

 Initialize fastNLO class(es)
(N)NLO Program

fastNLOCreate fnlo(„steering.str“);
fnlo.SetOrderOfCalculation(int order);

fnlo.fEvent.SetProcessID(int id);

fnlo.fEvent.SetWeight(double w);

fnlo.fEvent.SetX1(double x1);
fnlo.fEvent.SetX2(double x2);

fnlo.fScenario.SetObservable0(double pt);
fnlo.fScenario.SetObsScale1(double s1);

fnlo.Fill();

M
C
 I
n
te
g
ra
ti
o
n

Program Start

Program End

(N)NLO Result

 Pass the process specific
variables during the ‘event loop’
to fastNLO

• Order does not matter
• Many other convenient

implementations possible

 Pass all information to fastNLO

18

Application procedure of new ‘fastNLO Toolkit’

 Initialize fastNLO class(es)
(N)NLO Program

fastNLOCreate fnlo(„steering.str“);
fnlo.SetOrderOfCalculation(int order);

fnlo.fEvent.SetProcessID(int id);

fnlo.fEvent.SetWeight(double w);

fnlo.fEvent.SetX1(double x1);
fnlo.fEvent.SetX2(double x2);

fnlo.fScenario.SetObservable0(double pt);
fnlo.fScenario.SetObsScale1(double s1);

fnlo.Fill();

fnlo.SetNumberOfEvents(double nevents);
fnlo.WriteTable();

M
C
 I
n
te
g
ra
ti
o
n

Program Start

Program End

(N)NLO Result fastNLO Table

 Set normalization of the MC
integration and write table

 Pass the process specific
variables during the ‘event loop’
to fastNLO

• Order does not matter
• Many other convenient

implementations possible

 Convenient implementation of fastNLO into any (N)NLO program possible

 Pass all information to fastNLO

 Minimum implementation:
11 lines of code

19

New developments for fastNLO toolkit

 1) Creation of fastNLO tables
• One stand-alone c++ library

• No third party packages needed
• Optimally: Only 11 lines of code necessary
• Depending on (N)NLO program:

many implementations possible

• Parameters are specified in steering card
• Binning (also double- or triple- differentially)

• Performance optimized
• Caching of interpolation values
• Automatic optimization of grids to phase

space

• PDF parton combinations for different
subprocesses
• Specified in steering
• Stored in table

 2) fastNLO table format
• Further contributions are forseen

• EW corrections, etc…

• PDF combinations are stored in table
• Storage of uncertainties soon available
• QEDPDFs or p-Pb collisions also forseen

 3) Evaluating fastNLO tables
• New interface in PYTHON

• Many interfaces to PDF and αs routines
• LHAPDF5, LHAPDF6, Hoppet, QCDNUM,

ALPHAS, CRunDec, …

• Improved speed for flexible-scale tables
• Caching of PDFs and αs values for (even)

faster re-evaluation

// FastNLO example code in c++ for reading CMS incl.

// jets (PRL 107 (2011) 132001) with CT10 PDF set

fastNLOLHAPDF fnlo("fnl1014.tab","CT10.LHgrid",0);

fnlo.PrintCrossSections();

20

Summary and Outlook

 fastNLO enables fast re-evalution of perturbative c alculations
• Convenient for scale or PDF studies (e.g. uncertainties)
• Mandatory tool for phenomenological analysis (e.g. αs or PDF fits)

 Scale-independent concept successfully applied in N NLO

 fastNLO is applicable to a wide range of processes and corrections

 New tool: ‘fastNLO toolkit’
• Facilitates creation of tables and interface to other (N)NLO programs
• Very flexible code:

Only few modifications in (N)NLO programs are needed (O(11) lines of code)

 Code and manual is released soon after conference
• Python interface available for reading tables

• pre-release version of ‘fastNLO toolkit’ is available on request
• more information: http://fastnlo.hepforge.org

21

22

Application of flexible scale concept
 Inclusive jet production in DIS

 Two scales are stored in table
• Q2

• pT of the jet
 Any function of the two can be used as scale

 Renormalization and factorization scale can be
varied seperately

 Choose for scale study
• µr

2 = Q2+pT

• µf
2 = Q2

• Color code shows 5% change in cross section
w.r.t. to scale factor of 1

 Other scale choices also shown without scale
factors

QCD compton QCD compton Boson− gluon fusion Boson− gluon fusion

