Little is known about the strange sea

QCD analysis of the ATLAS and CMS W± and Z cross-section measurements and implications for the strange sea density

ArXiv:1803.00968 accepted by PRD

CSKK: A. Cooper-Sarkar, K. Klimek
presented by O. Turkot

Motivation

- PDFs fits $x\sim0.01$ mainly constrained by HERA: light flavor quarks and antiquarks
- Flavor composition of total light sea not well determined by HERA data alone
 - → in particular little is known about strange sea
- This comes from di-muon production in neutrino induced deep inelastic scattering
 - sensitive to uncertainties from charm fragmentation and nuclear corrections
- Neutrino data suggest suppression of strange sea:

At LHC W+c data give information on strangeness BUT involve assumptions on charm jet fragmentation and hadronisation

- CMS W+charm analysis supports suppression
- ATLAS W+charm analysis finds no suppression
- New ATLAS inclusive W/Z production finds no suppression

- Drell-Yan process and DIS are theoretically best understood processes
 - → Interesting to investigate if this disagreement is present for the inclusive Drell Yan data of ATLAS and CMS

small effect ~ 4%

- \rightarrow can we see it?
 - \rightarrow yes we can!

Main fit - CSKK - includes inclusive DY production

CMS Z @ 7 TeV

- CMS Collaboration, JHEP 12 (2013) 030, [arXiv:1310.7291].
- CMS W asymmetries @ 7 TeV

CMS Collaboration, Phys. Rev. D 90 (2014) 032004, [arXiv:1312.6283].

CMS W⁺⁻ cross sections @ 8 TeV

CMS Collaboration, Eur. Phys. J. C 76 (2016) 469, [arXiv:1603.01803].

- ATLAS W and Z cross sections from one data sets correlations
 ATLAS Collaboration, Eur. Phys. J. C 77 367 (2017), [arXiv:1612.03016]
 - → for all Z data we use only Z-mass-peak measurements
 - → off-peak Z data & CMS Z @ 8 TeV used as cross check

(22)

QCD analysis

- QCD analysis at NNLO, following ATLAS paper, using xFitter + independent code
 - RTOPT, Q² of HERA data from 7.5 GeV²
 - K-factors, APPLGRID predictions
- Parameterisation: 15 free parameters, 2 for strange sea
 - Chosen after parameterisation scan

$$xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}),$$

$$xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}},$$

$$x\bar{u}(x) = A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}},$$

$$x\bar{d}(x) = A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}},$$

$$xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}},$$

$$x\bar{s}(x) = A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}},$$

where $A_{\bar{u}} = A_{\bar{d}}$ and $B_{\bar{s}} = B_{\bar{d}} = B_{\bar{u}}$. Given the enhanced sensitivity to the strange-quark distribution through the ATLAS data, $A_{\bar{s}}$ and $C_{\bar{s}}$ appear as free parameters, assuming $s = \bar{s}$. The experimental data uncertainties are propagated to the extracted QCD fit parameters using the asymmetric Hessian method based on the iterative procedure of Ref. [128], which provides an estimate of the corresponding PDF uncertainties.

Fits to CMS & ATLAS data separately

This ratio is unity if strange quarks are not suppressed in relation to light quarks and is ~ 0.5 for the conventional level of suppression.

- Valence, gluon and total sea similar
- Break-up of sea sensitive to LHC data different for CMS and ATLAS
- at small x neither data support conventional level of suppression
- For x > 0.1 parameterisation uncertainties usually large

W.vs. Z

ATLAS .vs. CMS

- Experimental uncertainties
- Valence quarks, gluon and total sea similar
- Flavor break up of sea is similar at small x for W and Z data separately
 - Most information comes from Z data
 - For ATLAS correlations between Z and W important
- For $x \sim 0.01$ CMS ratio 1-2 sigma lower then ATLAS ratio
- However ALL configurations support unsuppressed strangeness > 0.5

Constraining power of various datasets

Fit quality

• Total and partial χ^2 s for W/Z data samples good

ATLAS + CMS with central Z fit → MainFit → CSKK

Clear that greater accuracy of ATLAS data dominates CSKK fit

combined fit has unsuppressed strangeness

• CMS data are not in tension with this result $\rightarrow \chi^2$ for CMS data is

still very good

	ATLAS and CMS \it{W}	ATLAS and CMS ${\it Z}$	ATLAS and CMS
			W and Z , CSKK fit
Total χ^2/NDF	1265/1096 = 1.15	1244/1086 = 1.15	1308/1141 = 1.15
Data set, χ^2/NDP			
HERA	1159/1056	1157/1056	1163/1056
ATLAS W^+	12/11		13/11
ATLAS W^-	8/11		9/11
ATLAS central CC Z		14/12	16/12
ATLAS central CF Z		9/9	7/9
CMS 7 TeV central Z		12/24	12/24
CMS 7 TeV W-asym.	13/11		14/11
CMS 8 TeV W^+, W^-	6/22		5/22

			·	
	CMS Z7	CMS W7,8	CMS Z7 + W7,	8
Total χ^2/NDF	1218/1965	1225/1074	1236/1098	
Data set, χ^2/NDP				
HERA	1156/1056	1157/1056	1157/1056	
CMS 7 TeV central Z	11/24		11/24	
CMS 7 TeV W-asymmetry		13/11	13/11	
CMS 8 TeV W^+, W^-		4/22	4/22	

Data description: W

Data description: Z

Both CMS and ATLAS and
 W & Z data well described

Parameterisation study

- Important parmeterisation check:
 - Free parameters for s distribution: Aubar, Bubar, Bstrange
- valence and gluon PDFs do not differ much
- low-x Dbar distribution consistent with Ubar for AUbar and BUbar free and for additional Bstr free
- strangeness ratio still consistent with unity for both

CSKK: ratio $\,R_s=rac{s+ar s}{ar d+ar u}\,$

$$R_s = 1.14 \pm 0.05 \text{ (experimental)}$$

 $R_s = 1.05 \pm 0.02$ (experimental)

 ± 0.03 (model) $^{+0.03}_{-0.05}$ (parameterisation) $^{+0.01}_{-0.02}$ ($\alpha_{\rm s}$)

 $^{+0.02}_{-0.01}$ (model) $^{+0.02}_{-0.01}$ (parameterisation) ± 0.01 ($\alpha_{\rm s}$)

- Total uncertainty dominated by parameterisation uncertainty for most of x range
- R_s consistent with unity at low x

Additional parameterisation study

- For the CSKK fit, dbar-ubar at $x\sim0.1$ is negative, 2-3 sigma away from positive value suggested by E866 fixed-target Drell-Yan data
- Maybe if positive (dbar-ubar) imposed on the fit \rightarrow strangeness decreases \rightarrow larger dbar is correlated to smaller strangeness in the current parameterisation
 - However E866 observation made at $x\sim0.1$, whereas the LHC data have largest constraining power at $x\sim0.01$
- Cross-check made with a parameterisation which forces (dbar-ubar)
 to be in agreement with the E866 data
 - $R_{e} = 0.95 \pm 0.07$ (experimental) at x = 0.023 and $Q^{2} = 1.9$ GeV²
 - Still consistent with unity, however \sim 2 sigma lower than central result
- not included in parameterisation variations \rightarrow not a good fit
 - X²/NDF of this fit is 1363/1141 compared to 1308/1141 for CSKK

Summary

- We consider CSKK as our main fit
 - HERA inclusive data + W data + Z peak data
- Our main conclusion about data sets

- → There is no tension between the HERA data and the LHC data or between the LHC data sets
- We consider $R_s=rac{s+ar{s}}{ar{d}+ar{u}}$ distribution our main result
 - For comparison with ATLAS result we also calculate R_s at certain x and Q^2 values
 - · Results with experimental, model and parameterisation uncertainties

Buck-up slides

Fits to CMS & ATLAS data together

- Valence, gluon and total sea similar
- Flavor break up of sea is similar at small x for W and Z data separately
- Both data sets support unsuppressed strangeness
 - Most information comes from Z data
 - For ATLAS correlations between Z and W important
- For x > 0.1 parameterisation uncertainties become large

CMS vs ATLAS vs both

- Experimental uncertainties
- Valence, gluon and total sea are similar for PDFs from ATLAS and CMS data, small differences well within uncertainties
- Strange distributions differ
- For $x \sim 0.01$ CMS ratio 1-2 sigma lower then ATLAS ratio

Fit quality - shifts of systematic uncertainties

- Shifts of correlated systematic uncertainties (treated as nuisanc parameters)
- HERA + ATLAS
- ATLAS only
- Looks OK

Model and $\alpha_{\mbox{\tiny s}}$ uncertainties

Variation	Total χ^2/NDF	$R_s = rac{s+ar{s}}{ar{d}+ar{u}}$	
		x = 0.023,	x = 0.013,
		$Q_0^2=1.9~\mathrm{GeV^2}$	$Q_0^2=8317~\mathrm{GeV^2}$
Nominal CSKK fit	1308 / 1141	1.14	1.05
	Model variations		
$Q^2_{ m min}=5~{ m GeV^2}$	1375 / 1188	1.14	1.06
$Q^2_{ m min}=10~{ m GeV^2}$	1251 / 1101	1.14	1.05
$m_b=4.25~{ m GeV}$	1307 / 1141	1.12	1.04
$m_b=4.75~{ m GeV}$	1310 / 1141	1.16	1.06
$\mu_{f_0}^2=1.6~{ m GeV^2}$ and $m_c=1.37~{ m GeV}$	1312 / 1141	1.16	1.06
$\mu_{f_0}^2=2.2~{ m GeV^2}$ and $m_c=1.49~{ m GeV}$	1308 / 1141	1.12	1.05
$\alpha_s(M_Z)$ variations			
$\alpha_s(M_Z) = 0.116$	1308 / 1141	1.12	1.04
$\alpha_s(M_Z) = 0.117$	1308 / 1141	1.13	1.05
$\alpha_s(M_Z) = 0.119$	1309 / 1141	1.14	1.06
$\alpha_s(M_Z) = 0.120$	1310 / 1141	1.15	1.06

Parameterisation uncertainty

Variation	Total χ^2/NDF	$R_s = rac{s+ar{s}}{ar{d}+ar{u}}$	
		x = 0.023,	x = 0.013,
		$Q_0^2=1.9~\mathrm{GeV^2}$	$Q_0^2=8317~\mathrm{GeV^2}$
Nominal CSKK fit	1308 / 1141	1.14	1.05
	Parameterisation variat	ions	
$B_{ar{s}}$	1308 / 1140	1.12	1.05
D_{u_v}	1308 / 1140	1.13	1.05
D_{d_v}	1308 / 1140	1.14	1.05
D_g	1306 / 1140	1.15	1.06
$D_{ar{u}}$	1305 / 1140	1.15	1.06
$D_{ar{d}}$	1302 / 1140	1.09	1.04
$ig E_{d_v}$	1308 / 1140	1.14	1.05
$A_{ar{u}}$ and $B_{ar{u}}$ free	1306 / 1139	1.17	1.07
$A_{ar{u}}$ and $B_{ar{u}}$ and $B_{ar{s}}$ free	1306 / 1138	1.17	1.07

CSKK: ratio $R_s=rac{s+ar{s}}{ar{d}+ar{u}}$

- R_s at x = 0.023 and $Q^2 = 1.9 \text{ GeV}^2$
 - Highest sensitivity at starting scale

$$R_s = 1.14 \pm 0.05 \text{ (experimental)} \pm 0.03 \text{ (model)} ^{+0.03}_{-0.05} \text{ (parameterisation)} ^{+0.01}_{-0.02} (\alpha_s)$$

- R_s at x = 0.013 and $Q^2 = M_7^2$
 - Maximal sensitivity for LHC data

$$R_s = 1.05 \pm 0.02$$
 (experimental) $^{+0.02}_{-0.01}$ (model) $^{+0.02}_{-0.01}$ (parameterisation) ± 0.01 (α_s)

• Compared to ATLAS result at x = 0.023 and $Q^2 = 1.9$ GeV²

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}} = 1.13 \pm 0.05 \text{ (exp)} \pm 0.02 \text{ (mod)} ^{+0.01}_{-0.06} \text{ (par)}$$

Hesse uncertainty .vs. MC replicas

- Main method of experimental uncertainty estimation: Hesse
- Cross check done using MC replicas
- PDFs obtained with both methods agree well
- Uncertainties compatible 🖁

Cross checks - adding more DY data

Adding off-peak Z 7 TeV data

- results not changed substantially
- experimental uncertainties are also not much reduced
- ightarrow larger theoretical uncertainties, from electroweak effects and γ induced processes

→ Next CMS Z 8 TeV data added

- result not changed substantially
 - Strangeness consistent
- In fact CMS 8 TeV Z-peak data favor even larger strangeness than CSKK for small x

Adding Z off-peak data

- Not very good agreement for CMS off-peak data and ATLAS lowmass (seen in ATLAS analysis as well)
- There are larger theoretical uncertainties for off-peak mass regions coming from electroweak effects and photon induced processes
 - → we use only peak data for nominal CSKK fit

CMS Z@ 8 TeV data

	ATLAS and CMS W and all Z bins		CMS W and
	Z at 7 TeV	Z at 7 and 8 TeV	all Z bins
Total $\chi^2/{ m NDF}$	1481/1243 = 1.19	1814/1351 = 1.34	1596/1290 = 1.24
Data set, χ^2/NDP			
HERA	1163/1056	1178/1056	1186/1056
ATLAS W^+	13/11	12/11	
ATLAS W^-	9/11	15/11	
ATLAS central CC Z	15/12	26/12	
ATLAS central CF Z	7/9	8/9	/
ATLAS CC Z , $116 < M_z < 150$ GeV	8/6	7/6	
ATLAS CF Z , 116 $< M_z < 150$ GeV	4/6	4/6	
ATLAS CC Z , $46 < M_z < 66$ GeV	28/6	34/6	
CMS 7 TeV W-asym.	14/11	14/11	18/11
CMS 8 TeV W^+, W^-	5/22	7/22	5/22
CMS 7 TeV Z central	12/24	13/24	16/24
CMS 7 TeV Z , $120 < M_z < 200$ GeV	31/24	28/24	25/25
CMS 7 TeV Z , 200 $< M_z < 1500$ GeV	20/12	19/12	17/12
CMS 7 TeV Z , $30 < M_z < 45$ GeV	35/24	35/24	36/24
CMS 7 TeV Z , $45 < M_z < 60$ GeV	22/24	20/24	20/24
CMS 8 TeV Z central		74/24	66/24
CMS 8 TeV Z , $120 < M_z < 200$ GeV		73/24	56/24
CMS 8 TeV Z , 200 $< M_z < 1500$ GeV		14/12	12/12
CMS 8 TeV Z , $30 < M_z < 45$ GeV		38/24	37/24
CMS 8 TeV Z , $45 < M_z < 60$ GeV		29/24	20/24

- CMS Z @ 8 TeV are not well described
- Found by NNPDF too
- some tension with ATLAS central mass & rapidity Z appears
- not well fitted even
 when fitted together
 with just HERA and
 other CMS data