

QCD@LHC 2015

Jet measurements, alpha_s and PDF results from CMS

- Motivation
- Some News on Photons (on Request)
- Inclusive Jets
- Multi-Jet Production
- The strong Coupling Constant α_s
- α_s Summary
- Summary

Abundant production of jets \rightarrow hadron colliders are "jet laboratories" Learn about hard QCD, the proton structure, non-perturbative effects ...

Jets at the LHC

Abundant production of jets \rightarrow hadron colliders are "jet laboratories" ... and the strong coupling α_s . Least known fundamental constant!

CMS & Luminosity

(Di-)Photons

Higgs or no Higgs?

Di-Photons at 7 TeV

Di-Photons + Jets at 7 TeV

- No new results yet on photon+X or photon+jet+X from CMS :-(- But first performance studies for Z \rightarrow $\mu\mu\gamma$ at 13 TeV :-)

Klaus Rabbertz

- No new results yet on photon+X or photon+jet+X from CMS :-(- But first performance studies for $Z \rightarrow \mu\mu\gamma$ at 13 TeV :-)
- Together with $Z \rightarrow ee$ essential for corrections to photon selection efficiency!

Klaus Rabbertz

CMS Jet + Photon Summary

CMS Preliminary

Klaus Rabbertz

Mar 2014

All Inclusive

High transverse Momenta

- 0.0 <|y|< 0.5 (× 10

-**--** 0.5 <|y|< 1.0(× 10⁴ → 1.0 <|y|< 1.5 (× 10³

-▼ 1.5 <|y|< 2.0(× 10²

→ 2.0 <|y|< 2.5(× 10¹

-+- 2.5 <|y|< 3.0 (× 10⁰ 3.2 < y < 4.7

London, UK, 02.09.2015

2000

1000

Jet p₁ [GeV/c]

 $\times 10^{-1}$

100

200

500

Jet p₊ (GeV)

400

Agreement with predictions of QCD at NLO over many orders of magnitude in cross section and even beyond 2 TeV in jet p, and for rapidities |y| up to ~ 5

Similar picture at 7 TeV, 8 TeV (left) or NEW 2.76 TeV (right)

CMS-PAS-FSQ-12-031 (2013), CMS-PAS-SMP-14-017 (2015).

200

300

QCD@LHC 2015

Exp. Uncertainty

80 90100

anti-kT, R=0.7, 8 TeV, 2012

= 8 TeV

 10^{3}

10

10

 10^{-3}

 10^{-5}

Data vs. NLO pQCD Solution State State

corrections

10⁻¹

10⁻³

 10^{-5}

Inclusive Jets

 $\propto \alpha'_{s}$

 $d^2\sigma$

CMS-PAS-SMP-12-012 (2013)

Agreement with predictions of QCD over many orders of magnitude in cross section and beyond 2 TeV in jet $p_{\rm T}$

Constrains PDFs "Harder" gluon at high x compared to DIS

Inclusive Jet Ratios: "2.76 / 8.0"

New from CMS:

- cross sections at 2.76 TeV

ratios to 8 TeV Shown double ratio to theory

Ratio at E_{cms} = 2.76 and 8.0 TeV \rightarrow at least partial cancellation of uncertainties \rightarrow more precise comparisons

Multi-Jets and α_s

Azimuthal Decorrelations at 8 TeV

3-Jet Mass

3- to 2-Jet Ratios

Jets (& ttbar) α_s Summary

PDG α_s Summary

Summary

- Some LHC Results at 8 TeV still to be finalized ... and 13 TeV ongoing
- Data quality makes jet measurements PRECISION PHYSICS
- Of course, we hope that our results are not only precise, but also "accurate" :-)
- Theory definitely entered regime of NLO as Standard
- But still theory uncertainty dominant, NNLO required at least …!
- ... and photon data and PDFs.
- Many PDF/ α_s relevant measurements from LHC ongoing or in near future \rightarrow reduction of uncertainties possible

Summary

- Some LHC Results at 8 TeV still to be finalized ... and 13 TeV ongoing
- Data quality makes jet measurements PRECISION PHYSICS
- Of course, we hope that our results are not only precise, but also "accurate" :-)
- Theory definitely entered regime of NLO as Standard
- But still theory uncertainty dominant, NNLO required at least …!
- ... and photon data and PDFs.
- Many PDF/ α_s relevant measurements from LHC ongoing or in near future \rightarrow reduction of uncertainties possible

Thank you for your attention and the invitation to speak here!

Backup Slides

Klaus Rabbertz

London, UK, 02.09.2015

QCD@LHC 2015

26

Dijet Angular & EW Corrections

Better agreement theory vs. data WITH ew corrections \rightarrow ~ 5% higher exclusion limits for searches

Klaus Rabbertz

London, UK, 02.09.2015

QCD@LHC 2015

28

QCD at the LHC

Huge accessible phase space

- +⁸ 0²/GeV^z Atlas and CMS Atlas and CMS rapidity plateau Central+Fwd. Jets 10 CDF/D0 Central Jets 10^{6} H1 ZEUS 10 5 NMC BCDMS 10^{4} E665 100 SLAC 10^{3} 10^{2} = 10 GeV10 10 10^{-5} -3 -2 -6 -4 -1 10 10 10 1010 10х S. Glazov, Braz.J.Ph. 37 (2007) 793.
- **Fascinating** comprises a huge variety of phenomena
- Unavoidable hadrons are "made of QCD"
- Indispensable linking piece between many processes
- **Demanding** enormous background to searches for new physics
- **Uncharted** dominating uncertainty for **Higgs cross sections**

Klaus Rabbertz

London, UK, 02.09.2015

QCD@LHC 2015

Jet Energy Scale and Pile Up

But: New situation in 2012 at 8 TeV with many pile-up collisions!

ATLAS Z $\rightarrow \mu\mu$ candidate with 25 reconstructed primary vertices: (Record beyond 70!)

Photon Production

Tevatron

LHC 14 TeV

Background: Non-prompt Photons from Decays, e.g. π⁰, η

d'Enterria, Rojo, NPB860 (1202) 311.

Formerly underexplored process:

- high fraction of fragmentation photons, cured by isolation - theory available at NLO, sensitive to \rightarrow gluon (PDF)

Inclusive

Isolated

Klaus Rabbertz

London, UK, 02.09.2015

QCD@LHC 2015

32